Low-temperature degradation of different zirconia ceramics for dental applications.

Acta Biomater

Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.

Published: March 2012

The aim of this investigation was to determine the influence of simulated ageing on the tetragonal-to-monoclinic phase transformation and on the flexural strength of a 3Y-TZP ceramic, compared to alumina toughened zirconia (ATZ) and ceria-stabilized zirconia (12Ce-TZP). Standardized disc specimens of each material were hydrothermally aged in steam at 134°C and 3bar for 0, 16, 32, 64 or 128h. The phase transformation was determined by X-ray diffraction (XRD) and atomic force microscopy. Scanning electron microscopy was performed to estimate the depth of the transformation zone. The flexural strength was investigated in a biaxial flexural test. XRD revealed a significant increase in the monoclinic phase content for 3Y-TZP and ATZ due to ageing, although this increase was less pronounced for ATZ. In contrast, the monoclinic phase content of 12Ce-TZP was not influenced. For 3Y-TZP and ATZ, a transformation zone was found of which the depth linearly correlated with ageing time, while for 12Ce-TZP no transformation zone could be observed. Changes in flexural strength after ageing were heterogeneous: while 3Y-TZP showed a significant decrease in strength - from 1740 to 1169 MPa - with ATZ there was a considerable increase - from 1093 to 1378 MPa. The flexural strength of 12Ce-TZP remained unaffected at the low level of about 500 MPa. These results indicate that both alumina and ceria, as stabilizing oxides, reduce the susceptibility of zirconia to hydrothermal degradation; the alternative use of these oxides may enhance the clinical long-term stability of dental zirconia restorations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2011.11.016DOI Listing

Publication Analysis

Top Keywords

flexural strength
16
transformation zone
12
phase transformation
8
monoclinic phase
8
phase content
8
3y-tzp atz
8
zirconia
5
transformation
5
flexural
5
strength
5

Similar Publications

Study on the mechanics and self-sensing properties of ultrahigh-performance shotcrete containing waste glass aggregates.

Sci Rep

January 2025

Research Center of Traffic Disaster Prevention and Mitigation, Jilin Jianzhu University, Jilin Jianzhu University, Xincheng Street, Changchun, 130118, Jilin, China.

To promote the recycling of waste glass and satisfy the demands of environmental sustainability for ultrahigh performance concrete (UHPC), in this study, glass sand was employed to partially or entirely replace machine-made sand, and steel fibres were incorporated to fabricate ultrahigh performance shotcrete (UHPS). The effects of glass sand and steel fibres on the mechanical and electrical properties of composite materials were analysed in this study. Furthermore, alkali‒silica reaction (ASR) tests and microstructural analyses were conducted.

View Article and Find Full Text PDF

Bulk-fill, monochromatic, and ORMOCER composites were introduced in restorative dentistry with the aim of reducing clinical time and/or alleviating contraction stresses at the interface between the tooth and restoration. While the conversion and immediate properties of these materials are comparable to conventional composites, studies evaluating their long-term properties and the structure of the polymer matrix are lacking. The objective of this study was to evaluate the degree of conversion and, indirectly, the crosslink density of conventional, bulk-fill, monochromatic, and ORMOCER resin composites.

View Article and Find Full Text PDF

Ecological concrete by partially substitution of cement with Cameroonian corn stover ash.

Heliyon

January 2025

Mechanics Laboratory, Doctoral Training Unit in Engineering Sciences, Doctoral School of Fundamental and Applied Sciences, University of Douala, P.O. Box: 2701, Douala, Cameroon.

This study focuses on the influence of the partial substitution of cement by Cameroonian corn stover ash (CCSA) on the physical and mechanical behavior of concrete. For this, as materials used, one has first the corn stovers coming from the Bandjoun town in the Koung-khi division, in the West region of Cameroon, which are used to obtain the ashes, while the sand used, came from the Sanaga River in the coastal region of Cameroon. In order to obtain the CCSA, the corn stover is calcined in an oven at 600 °C for 6 h and then characterized; the characterization included infrared spectrometry, X-ray fluorescence spectrometry, fineness of grinding, and absolute density.

View Article and Find Full Text PDF

Sustainable application of waste gangue mortar in coal mine tunnel support.

Sci Rep

January 2025

School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.

With the increase in coal mining depths, soft and fractured roadway surrounding rocks require grouting and a sprayed protective layer for maintenance. Simultaneously, extensive accumulation of coal gangue causes diverse environmental issues. To enhance on-site coal gangue utilization, this study replaced river sand and cement with coal gangue to develop a novel cement-based mortar for supporting coal mine roadways.

View Article and Find Full Text PDF

Effect of crystallization temperature on the flexural strength of lithium disilicate glass ceramics.

J Prosthodont

January 2025

Division of Prosthodontics, Department of Restorative Sciences, University of Minnesota, Minneapolis, Minnesota, USA.

Purpose: This pilot study aimed to compare the flexural strength of Amber Mill CAD to IPS e.max CAD and to determine the impact of different crystallization protocols on the flexural strength of Amber Mill CAD ceramics.

Materials And Methods: Amber Mill CAD ceramic blocks of a known Vita Classic shade were selected for testing against control IPS e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!