Environmental enrichment is known to improve learning and memory in adult rodents. Whereas the morphological changes underlying these beneficial effects are well documented, few studies have addressed the influence of this housing condition on the neuronal networks underlying memory processes. We assessed the effects of environmental enrichment on behavioural performances and brain metabolic activation during a memory task in mice. Adult mice were housed in standard (SC) or enriched (EC) conditions for 3 weeks. Then, recent and remote memory performances were measured in the passive avoidance test. After testing, brain metabolic activation was assessed through cytochrome oxidase (CO) activity. EC improved recent memory, in association with an increased metabolic activation in the frontal and prefrontal cortices and a decreased activation in the baso-lateral amygdala and the hippocampus. EC did not improve remote memory, and globally decreased CO activity. Our findings suggest the involvement of regions of pivotal importance during recent memory, such as the frontal cortex, in the beneficial effects of EC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2011.11.022 | DOI Listing |
Hematology
December 2025
Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
Background: Platelet concentrates play an important role in clinical treatment such as platelet function disorders and thrombocytopenia. In the process of preparation and storage of platelets, centrifugation, leukofiltration, and agitation will cause morphological changes and impaired function of platelets, which is associated with the increase of platelet transfusion refractoriness, and named as platelet storage lesion (PSL).
Method: This paper proposes three major operations (centrifugation, agitation, and leukofiltration) that platelets experience during the preparation and storage process, to explore the effect of physical cues on PSL.
3 Biotech
February 2025
CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India.
Unlabelled: Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling.
View Article and Find Full Text PDFClin Exp Hepatol
March 2024
General Surgery Department, Hepatobiliary Surgery Unit, Faculty of Medicine, Alexandria University, Egypt.
Aim Of The Study: Metabolic associated steatotic liver disease (MASLD) is one of the most frequent chronic liver diseases in the world; macrophage activation is reflected by increased expression of CD163, which sheds as serum soluble CD163 that is linked to hepatic steatosis, inflammation, and fibrosis. Aim of the study was assessment of liver macrophage activation and hepatic histopathological changes in patients with MASLD.
Material And Methods: A total of 30 patients with MASLD and equal numbers of age- and sex-matched healthy controls were enrolled in the study.
IBRO Neurosci Rep
June 2025
Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.
From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Autophagic activation in immune cells, gut microbiota dysbiosis, and metabolic abnormalities have been reported separately as characteristics of systemic lupus erythematosus (SLE). Elucidating the crosstalk among the immune system, commensal microbiota, and metabolites is crucial to understanding the pathogenesis of autoimmune diseases. Emerging evidence shows that basophil activation plays a critical role in the pathogenesis of SLE; however, the underlying mechanisms remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!