The nature of ribonuclease A (RNase) modifications induced by p-benzoquinone (pBQ) was investigated using several analysis methods. SDS-PAGE experiments revealed that pBQ was efficient in producing oligomers and polymeric aggregates when RNase was incubated with pBQ. The fluorescence behavior and anisotropy changes of the modified RNase were monitored for a series of incubation reactions where RNase (0.050 mM) was incubated with pBQ (0.050, 0.25, 0.50, 1.50 mM) at 37 °C in phosphate buffer (pH 7.0, 50 mM). The modified RNase exhibited less intense fluorescence and slightly higher anisotropy than the unmodified RNase. UV-Vis spectroscopy indicated that pBQ formed covalent bonds to the modified RNase. Confocal imaging analysis confirmed the formation of the polymeric RNase aggregates with different sizes upon exposure of RNase to high concentrations of pBQ. The interaction between the modified RNase and salts affecting biomineralization of salts was also investigated by scanning electron microscopy. Overall, our results show that pBQ can induce formation of both RNase adducts and aggregates thus providing a better understanding of its biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2011.11.002 | DOI Listing |
Nucleic Acids Res
January 2025
Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.
View Article and Find Full Text PDFJ Bacteriol
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.
J Am Chem Soc
December 2024
The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil.
Friedreich's Ataxia (FRDA) is the most common autosomal recessive ataxia worldwide and is caused by biallelic unstable intronic GAA expansions at FXN. With its limited therapy and the recent approval of the first disease-modifying agent for FRDA, the search for biological markers is urgently needed to assist and ease the development of therapies. MiRNAs have emerged as promising biomarkers in various medical fields such as oncology, cardiology, epilepsy and neurology as well.
View Article and Find Full Text PDFRNA Biol
January 2024
Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!