Suitable analogs of d-mannoheptulose are currently considered as possible tools for the non-invasive imaging of pancreatic islet insulin-producing cells. Here, we examined whether (19)F-heptuloses could be used for non-invasive imaging of GLUT2-expressing cells. After 20 min incubation, the uptake of (19)F-heptuloses (25 mM) by rat hepatocytes, as assessed by (19)F NMR spectroscopy, ranged from 0.50 (1-deoxy-1-fluoro-d-mannoheptulose and 3-deoxy-3-fluoro-d-mannoheptulose) to 0.25 (1,3-dideoxy-1,3-difluoro-d-mannoheptulose) and 0.13 (1-deoxy-1-fluoro-d-glucoheptulose, 3-deoxy-3-fluoro-d-glucoheptulose and 1,3-dideoxy-1,3-difluoro-d-glucoheptulose) μmol per 3×10(6)cells. (19)F MRI experiments also allowed the detection of 1-deoxy-1-fluoro-d-mannoheptulose in rat hepatocytes. All three (19)F-mannoheptuloses cited above, as well as 7-deoxy-7-fluoro-d-mannoheptulose and 1-deoxy-1-fluoro-d-glucoheptulose inhibited insulin release evoked in rat isolated pancreatic islets by 10mM d-glucose to the same extent as that observed with an equivalent concentration (10mM) of d-mannoheptulose, while 3-deoxy-3-fluoro-d-glucoheptulose and 1,3-dideoxy-1,3-difluoro-d-glucoheptulose (also 10mM) were less potent than d-mannoheptulose in inhibiting insulin release. The 1-deoxy-1-fluoro-d-mannoheptulose and 3-deoxy-3-fluoro-d-mannoheptulose only marginally affected INS-1 cell viability. These findings are compatible with the view that selected (19)F-heptuloses may represent suitable tools for the non-invasive imaging of hepatocytes and insulin-producing cells by (19)F MRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2011.11.014 | DOI Listing |
J Neurochem
January 2025
Core Facility Small Animal MRI, Ulm University, Ulm, Germany.
Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.
View Article and Find Full Text PDFAnal Methods
November 2017
Centre de Recherche sur la Conservation (CRC), MNHN, Sorbonne-Universités CNRS, MCC, USR 3224, CP21, 36 rue Geoffroy Saint Hilaire, 75005 Paris, France.
Reflectance spectral imaging is a powerful tool for the non-invasive study of cultural heritage objects. Particular visible to short wave infrared (400-2500 nm) spectral features are linked to compositional information. Spectral images can hence be used to generate useful chemical maps.
View Article and Find Full Text PDFUrologia
January 2025
Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India.
Introduction: Pseudotumors are benign lesions which may mimic like a malignant tumor on conventional imaging. They are formed in kidneys which are scarred and deformed by chronic pyelonephritis, glomerulonephritis, trauma or infarction. There is a diagnostic dilemma in most of the cases as to differentiate RCC and pseudotumors.
View Article and Find Full Text PDFAliment Pharmacol Ther
January 2025
MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA.
Background: The current subclassification of steatotic liver disease (SLD) relies on validated questionnaires, such as Alcohol Use Disorders Identification Test (AUDIT) and Lifetime Drinking History (LDH), which, while useful, are impractical and lack precision for their use in routine clinical practice. Phosphatidylethanol (PEth) is a quantitative, objective alcohol biomarker with high sensitivity and specificity.
Aims: To assess the diagnostic accuracy of PEth for differentiating metabolic dysfunction and alcohol-associated liver disease (MetALD) from metabolic dysfunction-associated steatotic liver disease (MASLD) in a large, population-based, prospective, multiethnic cohort of individuals with overweight or obesity.
Nat Commun
January 2025
Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Accurate melanoma diagnosis is crucial for patient outcomes and reliability of AI diagnostic tools. We assess interrater variability among eight expert pathologists reviewing histopathological images and clinical metadata of 792 melanoma-suspicious lesions prospectively collected at eight German hospitals. Moreover, we provide access to the largest panel-validated dataset featuring dermoscopic and histopathological images with metadata.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!