AI Article Synopsis

Article Abstract

This study deals with the development of an oral controlled-release dosage form of a highly water-soluble antiepileptic drug. In this respect, drug-loaded spheroid particles close to 380 μm in diameter and composed of lipid binders were prepared by prilling. The purpose here was to thoroughly characterize the controlled-release mechanism of the drug in aqueous pH-6.8 buffered dissolution medium. Water and drug diffusion pathways as well as related kinetic parameters were determined by theoretical analysis of experimental data. Conventional in-vitro experiments performed by analytical high performance liquid chromatography showed that the released fraction reaches 90 wt.% only after a 24-hour immersion in the dissolution medium, pointing out an effective sustained release mechanism. Interpretation of these data was strengthened by the implementation of an innovative methodology involving X-ray diffraction and microtomography to follow the structural evolution of the drug-loaded microspheres at molecular and microscopic scales. This approach allowed to explicit that water and drug transports obey to Fickian diffusion behaviours in good agreement with Crank's and non-simplified Higuchi's equations, respectively. In the latter case, independent modelling of drug release assimilating the microspheres to a variable-geometry reservoir was considered to refine the kinetic analysis of the diffusion process. The water diffusion coefficient D(w) was found equal to 6.3 × 10(-9) cm(2)/s and the API apparent diffusion coefficient reduced to the tortuosity of the matrix D(API)/τ equal to 2 × 10(-9) cm(2)/s. This study ranks among the rare examples of monolithic dispersion device constituted by a highly soluble drug incorporated inside a perfectly inert lipid matrix. The dissolution liquid penetrates the particles through channels progressively created by the solubilization of the drug itself which occurs instantaneously at the inner front of the liquid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2011.11.027DOI Listing

Publication Analysis

Top Keywords

drug
8
water diffusion
8
dissolution medium
8
water drug
8
diffusion coefficient
8
equal 10-9
8
10-9 cm2/s
8
diffusion
6
controlled release
4
release highly
4

Similar Publications

Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.

View Article and Find Full Text PDF

Camptothecin: a key building block in the design of anti-tumor agents.

Future Med Chem

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China.

View Article and Find Full Text PDF

The present study examined the effects of cultural factors(ethnic identity, acculturation, perceived discrimination, and religiosity), derived from the Multicultural Assessment-Intervention Process (MAIP) model, on attitudes toward prescription drug use among Iranian/Persian Americans across the United States. The study consisted of a final sample of 454 Iranian/Persian American adult participants. The results indicated that Iranian/Persian American attitudes toward prescription drug use are impacted by demographic and cultural factors.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!