Central administration of corticotropin-releasing hormone (CRH) is known to enhance locomotion across a wide range of vertebrates, including the roughskin newt, Taricha granulosa. The present study aimed to identify the CRH effects on locomotor-controlling medullary neurons that underlie the peptide's behavioral stimulating actions. Single neurons were recorded from the rostral medullary reticular formation before and after intraventricular infusion of CRH in freely behaving newts and newts paralyzed with a myoneural blocking agent. In behaving newts, most medullary neurons showed increased firing 3-23 min after CRH infusion. Decreases in firing were less common. Of particular importance was the finding that in behaving newts, medullary neurons showed a cyclic firing pattern that was strongly associated with an increase in the incidence of walking bouts, an effect blocked by pretreatment with the CRH antagonist, alpha-helical CRH and not seen following vehicle administration. In contrast, the majority of medullary neurons sampled in immobilized newts lacked temporal cyclicity in their firing patterns following intraventricular infusion of CRH. That is, there was no evidence for a fictive locomotor activity pattern. Our results indicate that the actual expression of locomotion is a critical factor in regulating the behavior-activating effects of CRH and underscore the importance of using an awake, unrestrained animal for analysis of a hormone's neurobehavioral actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465356 | PMC |
http://dx.doi.org/10.1016/j.yhbeh.2011.11.004 | DOI Listing |
Auton Neurosci
January 2025
Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance.
View Article and Find Full Text PDFPflugers Arch
January 2025
Division of Neurophysiology, Department of Physiology, Hyogo Medical University, Hyogo, 663 8501, Japan.
The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFElife
January 2025
Centre for Neuroscience, Indian Institute of Science, Bengaluru, India.
Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood.
View Article and Find Full Text PDFBackground: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!