Classical views of speech perception argue that the static and dynamic characteristics of spectral energy peaks (formants) are the acoustic features that underpin phoneme recognition. Here we use representations where the amplitude modulations of sub-band filtered speech are described, precisely, in terms of co-sinusoidal pulses. These pulses are parameterised in terms of their amplitude, duration and position in time across a large number of spectral channels. Coherent sweeps of energy across this parameter space are identified and the local transitions of pulse features across spectral channels are extracted. Synthesised speech based on manipulations of these local amplitude modulation features was used to explore the basis of intelligibility. The results show that removing changes in amplitude across channels has a much greater impact on intelligibility than differences in sweep transition or duration across channels. This finding has severe implications for future experimental design in the fields of psychophysics, electrophysiology and neuroimaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bandl.2011.11.001 | DOI Listing |
ACS Nano
March 2025
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
In this study, we construct a quantum well effect-based two-dimensional Z-scheme superlattice heteronanostructure photocatalyst constructed from hydrogen-bonded porphyrin organic frameworks (HOFs) and carbon nitride. Porphyrin HOFs extend spectral absorption, while their π-conjugation and electron density variations significantly enhance charge separation and exhibit favorable alignment with the energy levels of carbon nitride, thereby enabling efficient charge transfer. Carboxylic acid channels in the HOFs further promote the decomposition of water molecules, thereby boosting hydrogen production.
View Article and Find Full Text PDFOrg Biomol Chem
March 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
The reduced form of nicotinamide adenine dinucleotide, commonly known as NADH, is an essential coenzyme existing in living organisms. Due to its involvement in various biological process, fluorescence imaging of intracellular NADH levels in different pathological conditions has emerged as an interesting area of research. We report here the exploration of a fluorescent probe, MQ-CN-BTZ, as a dual-channel NADH imaging agent (green and red channels) for cellular systems.
View Article and Find Full Text PDFJ Biomed Opt
March 2025
University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States.
Significance: We introduce a visible-light polarization-sensitive optical coherence tomography (PS-OCT) system that operates in the spectral domain with balanced detection (BD) capability. While the BD improves the signal-to-noise ratio (SNR), the use of shorter wavelengths improves spatial resolution and birefringence sensitivity.
Aim: We aim to implement a new optical design, characterize its performance, and investigate the imaging potential for biological tissues.
The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates.
View Article and Find Full Text PDFJ Inflamm Res
March 2025
School of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China.
Purpose: Observing the effects and roles of acupuncture on the morphology and neural coding damage of central amygdala (CeA) neurons in chronic inflammatory pain with depression (CIPD) mice and exploring the central nervous mechanism of acupuncture intervention in CIPD.
Methods: A CIPD model was established by injecting Complete Freund's Adjuvant (CFA) into the left hind foot. Using paw withdrawal latency (PWLs), forced swimming, and open field tests, 40 mice with successfully replicated models were selected and randomly divided into a model group, acupuncture group, and sham acupuncture group, with 12 mice in each group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!