Background: Biological timing mechanisms that integrate cyclical and successive processes are not well understood. C. elegans molting cycles involve rhythmic cellular and animal behaviors linked to the periodic reconstruction of cuticles. Molts are coordinated with successive transitions in the temporal fates of epidermal blast cells, which are programmed by genes in the heterochronic regulatory network. It was known that juveniles molt at regular 8-10 hr intervals, but the anticipated pacemaker had not been characterized.
Results: We find that inactivation of the heterochronic gene lin-42a, which is related to the core circadian clock gene PERIOD (PER), results in arrhythmic molts and continuously abnormal epidermal stem cell dynamics. The oscillatory expression of lin-42a in the epidermis peaks during the molts. Further, forced expression of lin-42a leads to anachronistic larval molts and lethargy in adults.
Conclusions: Our results suggest that rising and falling levels of LIN-42A allow the start and completion, respectively, of larval molts. We propose that LIN-42A and affiliated factors regulate molting cycles in much the same way that PER-based oscillators drive rhythmic behaviors and metabolic processes in mature mammals. Further, the combination of reiterative and stage-specific functions of LIN-42 may coordinate periodic molts with successive development of the epidermis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2011.10.054 | DOI Listing |
J Proteomics
January 2025
Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
In our previous research, we found that not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing ds affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing ds (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis.
View Article and Find Full Text PDFJ Insect Physiol
November 2024
Molecular Developmental Physiology and Signal Transduction, Biology Department, KU Leuven, Naamsestraat 59 Box 2465, B-3000 Leuven, Belgium. Electronic address:
The process of molting represents a critical phase in the life cycle of arthropods, marking periods of growth and development. Central to this process is the eclosion hormone (EH), a neurohormone that plays a pivotal role in initiating and regulating the complex sequence of events leading to successful molting in holometabolan species. Very little information is available in Hemimetabola, which display a different kind of development characterized by gradual changes.
View Article and Find Full Text PDFBiol Cell
December 2024
Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul, Brasil.
The crustacean molting cycle is triggered by the elevation of ecdysteroid levels in the hemolymph during late pre-molt. It is known that these animals absorb water through the intestine and gills to promote bodily swelling and rupture of the old exoskeleton. The participation of two membrane proteins responsible for the most uptake of water during the late pre-molt has been shown in the gill and gut cells of the freshwater shrimp Palaemon argentinus: Na/K-ATPase (NKA), which generates an osmoionic gradient, and Aquaporins (AQPs), water channels, which provide higher water permeability.
View Article and Find Full Text PDFSci Rep
November 2024
Instituto de Ciencias Marinas y Limnológicas, Laboratorio Costero Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
Marine heatwaves (MHW) pose an increasing threat and have a critical impact on meroplanktonic organisms, because their larvae are highly sensitive to environmental stress and key for species' dispersion and population connectivity. This study assesses the effects of MHW on two key moulting cycle periods within first zoea of the valuable crab, Metacarcinus edwardsii. First, the changes in swimming behaviour during zoea I were recorded and associated to moult cycle substages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!