Bioremediation of selected endocrine disrupting compounds (EDCs)/estrogens viz. estriol (E3) and ethynylestradiol (EE2) was evaluated in bio-electrochemical treatment (BET) system with simultaneous power generation. Estrogens supplementation along with wastewater documented enhanced electrogenic activity indicating their function in electron transfer between biocatalyst and anode as electron shuttler. EE2 addition showed more positive impact on the electrogenic activity compared to E3 supplementation. Higher estrogen concentration showed inhibitory effect on the BET performance. Poising potential during start up phase showed a marginal influence on the power output. The electrons generated during substrate degradation might have been utilized for the EDCs break down. Fuel cell behavior and anodic oxidation potential supported the observed electrogenic activity with the function of estrogens removal. Voltammetric profiles, dehydrogenase and phosphatase enzyme activities were also found to be in agreement with the power generation, electron discharge and estrogens removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.10.037DOI Listing

Publication Analysis

Top Keywords

electrogenic activity
12
electron transfer
8
power generation
8
estrogens removal
8
endocrine disruptive
4
estrogens
4
disruptive estrogens
4
estrogens role
4
electron
4
role electron
4

Similar Publications

Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.

View Article and Find Full Text PDF

Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.

View Article and Find Full Text PDF

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

A Redox-Enzyme Integrated Microbial Fuel Cell Design Using the Surface Display System in MR-1.

ACS Appl Mater Interfaces

January 2025

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.

View Article and Find Full Text PDF

Engineering Programmable Electroactive Living Materials for Highly Efficient Uranium Capture and Accumulation.

Environ Sci Technol

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.

Uranium is the primary fuel for nuclear energy, critical for sustainable, carbon-neutral energy transitions. However, limited terrestrial resources and environmental risks from uranium contamination require innovative immobilization and recovery solutions. In this work, we present a novel uranium recovery method using programmable electroactive living materials (ELMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!