AI Article Synopsis

  • A novel system was created by incorporating laccase into bimodal carbon-based magnetic composites, resulting in high enzyme adsorption capacity and improved stability.
  • The immobilized laccase showed excellent activity recovery and operated effectively across a wider range of pH and temperatures compared to free laccase.
  • The system effectively removed significant amounts of phenol and p-chlorophenol from solutions, demonstrating its potential as a valuable tool for environmental cleanup.

Article Abstract

A novel magnetically separable laccase immobilized system was constructed by adsorbing laccase into bimodal carbon-based mesoporous magnetic composites (CMMC). A large adsorption capacity (491.7 mg g(-1)), excellent activity recovery (91.0%) and broader pH and temperature profiles than free laccase have been exhibited by the immobilized laccase. Thermal stability was enhanced to a great extent and operational stability was increased to a certain extent. The shift of kinetic parameters indicated affinity change between enzyme and substrate. Application of the immobilized system in phenol and p-chlorophenol removal was investigated in a batch system. Adsorption effects of the support were responsible for the quick removal rate in the first hour, and up to 78% and 84% of phenol and p-chlorophenol were removed in the end of the reaction, respectively, indicating that the magnetic bimodal mesoporous carbon is a promising carrier for both immobilization of laccase and further application in phenol removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.11.015DOI Listing

Publication Analysis

Top Keywords

immobilization laccase
8
magnetic bimodal
8
bimodal mesoporous
8
mesoporous carbon
8
immobilized system
8
phenol p-chlorophenol
8
laccase
5
laccase magnetic
4
carbon application
4
removal
4

Similar Publications

Co-immobilization of laccase and zinc oxide nanoparticles onto bacterial cellulose to achieve synergistic effect of photo and enzymatic catalysis for biodegradation of favipiravir.

Int J Biol Macromol

December 2024

Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Engineering a Binding Peptide for Oriented Immobilization and Efficient Bioelectrocatalytic Oxygen Reduction of Multicopper Oxidases.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.

Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in CueO through semirational design.

View Article and Find Full Text PDF

Laccase is an extracellular enzyme that is widely used in the decolonization of textile dyes in waste water. The aim of our study was to isolate, purify, characterize and immobilize the laccase enzyme produced by HBB 7328. Purified laccase enzyme was immobilized in polyacrylamide gel to explore its ability in decolonization of textile dyes.

View Article and Find Full Text PDF

Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants.

J Hazard Mater

December 2024

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland. Electronic address:

The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!