A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections. | LitMetric

AI Article Synopsis

  • Studies on 24-hour urine collections need validation methods to ensure sample completeness; however, existing models for predicting urinary creatinine excretion (UCE) have limited usefulness in identifying incomplete collections.
  • A model was developed using data from a European study involving 600 subjects, which found key factors like body weight, sex, and protein intake having positive effects on UCE, while age showed a negative impact.
  • Despite these findings, the creatinine index used to detect incomplete collections demonstrated low sensitivity (6% for men and 11% for women) but high specificity (97% for men and 98% for women), indicating it's not reliable enough to confidently exclude incomplete urine samples.

Article Abstract

Studies using 24 h urine collections need to incorporate ways to validate the completeness of the urine samples. Models to predict urinary creatinine excretion (UCE) have been developed for this purpose; however, information on their usefulness to identify incomplete urine collections is limited. We aimed to develop a model for predicting UCE and to assess the performance of a creatinine index using para-aminobenzoic acid (PABA) as a reference. Data were taken from the European Food Consumption Validation study comprising two non-consecutive 24 h urine collections from 600 subjects in five European countries. Data from one collection were used to build a multiple linear regression model to predict UCE, and data from the other collection were used for performance testing of a creatinine index-based strategy to identify incomplete collections. Multiple linear regression (n 458) of UCE showed a significant positive association for body weight (β = 0·07), the interaction term sex × weight (β = 0·09, reference women) and protein intake (β = 0·02). A significant negative association was found for age (β = -0·09) and sex (β = -3·14, reference women). An index of observed-to-predicted creatinine resulted in a sensitivity to identify incomplete collections of 0·06 (95 % CI 0·01, 0·20) and 0·11 (95 % CI 0·03, 0·22) in men and women, respectively. Specificity was 0·97 (95 % CI 0·97, 0·98) in men and 0·98 (95 % CI 0·98, 0·99) in women. The present study shows that UCE can be predicted from weight, age and sex. However, the results revealed that a creatinine index based on these predictions is not sufficiently sensitive to exclude incomplete 24 h urine collections.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114511006295DOI Listing

Publication Analysis

Top Keywords

urine collections
20
identify incomplete
16
urinary creatinine
8
creatinine excretion
8
incomplete urine
8
data collection
8
multiple linear
8
linear regression
8
incomplete collections
8
reference women
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!