Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations.

J Phys Chem B

Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Published: January 2012

Protein A from the bacterium Staphylococcus aureus (SpA) has been widely used as an affinity ligand for purification of immunoglobulin G (IgG). The affinity between SpA and IgG is affected differently by salt and pH, but their molecular mechanisms still remain unclear. In this work, molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analysis were performed to investigate the salt (NaCl) and pH effects on the affinity between SpA and human IgG1 (hIgG1). It is found that salt and pH affect the interactions of the hot spots of SpA by different mechanisms. In the salt solution, the compensations between helices I and II of SpA as well as between the nonpolar and electrostatic energies make the binding free energy independent of salt concentration. At pH 3.0, the unfavorable electrostatic interactions increase greatly and become the driving force for dissociation of the SpA-hIgG1 complex. They mainly come from the strong electrostatic repulsions between positively charged residues (H137, R146, and K154) of SpA and the positively charged residues of hIgG1. It is considered to be the molecular basis for hIgG1 elution from SpA-based affinity adsorbents at pH 3.0. The dissociation mechanism is then used to refine the binding model of SpA to hIgG1. The model is expected to help design high-affinity peptide ligands of IgG.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp205770pDOI Listing

Publication Analysis

Top Keywords

affinity spa
8
positively charged
8
charged residues
8
spa
7
molecular
6
salt
6
affinity
5
molecular mechanism
4
mechanism effects
4
effects salt
4

Similar Publications

In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle.

View Article and Find Full Text PDF

The nicotinic acetylcholine receptor (nAChR) is a pentameric ligand-gated ion channel (pLGIC) commonly used as a model for receptors belonging to the Cys-loop superfamily. Members of pLGICs are standardly used in numerous toxicological investigations e.g.

View Article and Find Full Text PDF

Spondyloarthritis (SpA) is a chronic inflammatory disease that leads to ankylosis of the axial skeleton. Celecoxib (cyclooxygenase-2 inhibitor, COX-2i) inhibited radiographic progression in a clinical study of SpA, but in the following study, diclofenac (COX-2 non-selective) failed to show that inhibition. Our study aimed to investigate whether nonsteroidal anti-inflammatory drugs (NSAIDs) inhibited bone progression in SpA, and whether celecoxib had a unique function (independent of the COX-inhibitor), compared with the other NSAIDs.

View Article and Find Full Text PDF

OncoFAP is an ultrahigh affinity ligand of fibroblast activation protein (FAP), a tumor-associated antigen overexpressed in the stroma of the majority of solid tumors. OncoFAP has been previously implemented as a tumor-homing moiety for the development of small molecule drug conjugates (SMDCs). In the same context, the glycine--proline dipeptide was included with the aim to selectively undergo cleavage only in the presence of the target FAP, triggering the consequent release of the cytotoxic payload in the tumor microenvironment.

View Article and Find Full Text PDF

Synthesis, (bio)degradation, and utilization of starch-derived biopolymers in defined hard waters.

Carbohydr Polym

February 2025

Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy.

Climate change is causing a change in local rainfall, which generally brings with it a reduction in rainfall and, consequently, an increase in water hardness. This study explores the suitability and stability of various dextrin-derived polymers for cation removal in simulated hard water conditions. Thermal analysis and Fourier-transform infrared spectroscopy confirm the polymers' thermal stability and proper formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!