Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aldosterone and the mineralocorticoid receptor (MR) are critical to the maintenance of electrolyte and BP homeostasis. Mutations in the MR cause aldosterone resistance known as pseudohypoaldosteronism type 1 (PHA1); however, some cases consistent with PHA1 do not exhibit known gene mutations, suggesting the possibility of alternative genetic variants. We observed that G protein-coupled receptor 48 (Gpr48/Lgr4) hypomorphic mutant (Gpr48(m/m)) mice had hyperkalemia and increased water loss and salt excretion despite elevated plasma aldosterone levels, suggesting aldosterone resistance. When we challenged the mice with a low-sodium diet, these features became more obvious; the mice also developed hyponatremia and increased renin expression and activity, resembling a mild state of PHA1. There was marked renal downregulation of MR and its downstream targets (e.g., the α-subunit of the amiloride-sensitive epithelial sodium channel), which could provide a mechanism for the aldosterone resistance. We identified a noncanonical cAMP-responsive element located in the MR promoter and demonstrated that GPR48 upregulates MR expression via the cAMP/protein kinase A pathway in vitro. Taken together, our data demonstrate that GPR48 enhances aldosterone responsiveness by activating MR expression, suggesting that GPR48 contributes to homeostasis of electrolytes and BP and may be a candidate gene for PHA1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269176 | PMC |
http://dx.doi.org/10.1681/ASN.2011040351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!