Polyelectrolytes in multivalent salt solutions.

Electrophoresis

Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, ROC.

Published: November 2011

We study conformational and electrophoretic properties of polyelectrolytes (PEs) in tetravalent salt solutions under the action of electric fields by means of molecular dynamics simulations. Chain conformations are found to have a sensitive dependence on the salt concentration C(s). As C(s) is increased, the chains first shrink to a globular structure and subsequently re-expand above a critical concentration C(s)*. An external electric field can further alter the chain conformation. If the field strength E is larger than a critical value E*, the chains are elongated. E* is shown to be a function of C(s) by using two estimators E(I)* and E(II)* through the study of the polarization energy and the onset point of chain unfolding, respectively. The electrophoretic mobility of the chains depends strongly on C(s), and the magnitude increases significantly, accompanying the chain unfolding, when E>E(II)*. We study the condensed ion distributions modified by electric fields and discuss the connection of the modification with the change of chain morphology and mobility. Finally, E* is studied by varying the chain length N. The inflection point is used as a third estimator E(III)*. E(III)* scales as N(-0.63(4)) and N(-0.76(2)) at C(s) =0.0 and C(s)*, respectively. E(II)* follows a similar scaling law to E(III)* but a crossover appears at C(s) =C(s)* when N is small. The E(I)* estimator fails to predict the critical field, which is due to oversimplifying the critical polarization energy to the thermal energy. Our results provide valuable information to understand the electrokinetics of PE solutions at the molecular level and could be helpful in micro/nanofluidic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201100319DOI Listing

Publication Analysis

Top Keywords

salt solutions
8
electric fields
8
polarization energy
8
chain unfolding
8
chain
6
polyelectrolytes multivalent
4
multivalent salt
4
solutions study
4
study conformational
4
conformational electrophoretic
4

Similar Publications

Background: Low-volume hypertonic solutions, such as half-molar lactate (LAC), may be a potential treatment used for fluid resuscitation. This study aimed to evaluate the underlying cardiovascular effects and mechanisms of LAC infusion compared to sodium-matched hypertonic sodium chloride (SAL).

Methods: Eight healthy male participants were randomized in a controlled, single-blinded, crossover study.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E.

View Article and Find Full Text PDF

Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.

View Article and Find Full Text PDF

Monoelemental calibration solutions are the most common reference in elemental analysis, linking measurement results to the International System of Units (SI). National Metrology Institutes (NMI) prepare these solutions as certified reference materials (CRM) and determine their elemental mass fraction with high accuracy. Characterization with high accuracy is one of the most critical steps in CRM production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!