Objective: The aim of this study was to evaluate the distribution of generated stress around implants and adjacent bone tissue using different implant-retained overdenture designs through photoelastic analysis.

Methods: Over an edentulous human mandible, achieved from a human model, 2 or 4 microunit analog abutments were embedded (Master; Conexao Systems Prosthodontics, São Paulo, Brazil), settled in the interforaminal region. Three models of photoelastic resin (Araltec Chemicals Ltda, Hunstman, Guarulhos, São Paulo, Brazil), with 2 or 4 incorporated implants and microunit abutments, were obtained from molds using silicone for duplication. Inclusion, finishing, and polishing procedures were applied on the frameworks. This study was based on 3 different mechanisms of implant-retained mandibular overdentures: O'ring (GI), bar-clip (GII) (both with 2 implants), and their association (GIII) (with 4 implants). After the adaptation of each overdenture system on the photoelastic models, 100-N alternate occlusal loads were applied on back-side and front-side regions. The photoelastic analysis was made with the aid of a plain polariscope linked to a digital camera, Sony Cybershot α100, which allowed visualization of the fringes and registration of images on digital photographs.

Results: The results demonstrated higher tension concentrated over the GIII, with a flat distribution of stress to the posterior ridge and overload on the posterior implants. GI showed the smaller stress level, and GII, intermediate level; there was distribution of stress to the posterior ridge in these 2 groups.

Conclusion: The use of bar attachment proved to be a better alternative, because it showed a moderate level of tension with a more uniform stress distribution and possessed higher retention than did the ball system.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SCS.0b013e318232a791DOI Listing

Publication Analysis

Top Keywords

distribution stress
12
photoelastic analysis
8
são paulo
8
paulo brazil
8
stress posterior
8
posterior ridge
8
stress
6
implants
6
photoelastic
5
distribution
5

Similar Publications

Background: Tibial bone fractures in the malleolar regions are a major concern during the early postoperative period of total ankle replacement (TAR), affecting patient outcomes such as stability and recovery. Design, placement, and anatomic misalignment of implant components can contribute to malleolar fractures. The aim of this study is to understand the influence of implant design features, including keel, peg, stem, and bar type design, and bone-implant interfacial conditions on malleolar fracture following TAR.

View Article and Find Full Text PDF

Bidirectional effect modifications of temperature and PM on myocardial infarction morbidity and mortality in Beijing, China from 2007 to 2021.

Ecotoxicol Environ Saf

January 2025

Center for Clinical and Epidemiologic Research, Beijing An Zhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; National Clinical Research Center of Cardiovascular Diseases, Beijing, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China; The Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China. Electronic address:

Background: Ambient temperatures and PM can trigger myocardial infarction (MI), while little is known about the complex interplay between these two factors on MI, especially morbidity.

Objectives: To investigate bidirectional effect modifications of temperature and PM on MI morbidity and mortality.

Methods: A time-stratified case-crossover study was conducted utilizing high-resolution data of temperature and PM, along with 498,077 MI cases from the citywide registry in Beijing, China from 2007 to 2021.

View Article and Find Full Text PDF

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!