Validation of affinity reagents using antigen microarrays.

N Biotechnol

Science for Life Laboratory Stockholm, School of Biotechnology, KTH - Royal Institute of Technology, Box 1031, SE-171 21 Solna, Sweden.

Published: June 2012

There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2011.11.009DOI Listing

Publication Analysis

Top Keywords

affinity reagents
20
antigen microarrays
12
validation affinity
8
reagents
6
antigen
4
reagents antigen
4
microarrays
4
microarrays standardised
4
standardised validation
4
affinity
4

Similar Publications

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

A distinctive feature of both type 1 and type 2 diabetes is the waning of insulin-secreting beta cells in the pancreas. New methods for direct and specific targeting of the beta cells could provide platforms for delivery of pharmaceutical reagents. Imaging techniques such as Positron Emission Tomography (PET) rely on the efficient and specific delivery of imaging reagents, and could greatly improve our understanding of diabetes etiology as well as providing biomarkers for viable beta-cell mass in tissue, in both pancreas and in islet grafts.

View Article and Find Full Text PDF

Interaction of Vitamin D-BODIPY With Fat Cells and the Link to Obesity-associated Vitamin D Deficiency.

Anticancer Res

January 2025

Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A.;

Background/aim: Obese individuals often exhibit vitamin D deficiency, potentially due to sequestration in fat cells. Little is known about how vitamin D enters adipocytes and associates with the intracellular lipid droplet.

Materials And Methods: Newly differentiated human and mouse (3T3-L1) adipocytes and primary mouse adipocytes were treated with vitamin D covalently linked to green fluorescent BODIPY (VitD-B) or Green BODIPY (GB) as control.

View Article and Find Full Text PDF

Aptamers are oligonucleotide-based affinity reagents that are increasingly being used in various applications. Systematic evolution of ligands by exponential enrichment (SELEX) has been widely used to isolate aptamers for small-molecule targets, but it remains challenging to generate aptamers with high affinity and specificity for targets with few functional groups. To address this challenge, we have systematically evaluated strategies for optimizing the isolation of aptamers for (+)-methamphetamine, a target for which previously reported aptamers have weak or no binding affinity.

View Article and Find Full Text PDF

Bicyclic polyprenylated acylphloroglucinol-related meroterpenoids as potent DRAK2 inhibitors from Hypericum patulum.

Phytochemistry

December 2024

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Pharmacy, Fudan University, Shanghai, 201203, China. Electronic address:

As a both edible and medicinal plant, Hypericum patulum (Hypericaceae) is used as a natural herbal tea, scented tea, and folk medicine. In this study, eight undescribed bicyclic polyprenylated acylphloroglucinol-related meroterpenoids named hyperpatins A-H, along with eight known ones, were isolated from this plant. Their structures were elucidated on the basis of spectroscopic techniques, chemical method, X-ray crystallographic experiments, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!