Although radical cystectomy with urinary diversion is the standard treatment for muscle-invasive bladder cancer (MIBC), loss of native bladder frequently impairs patient's quality of life (QOL). Bladder-sparing approach incorporating chemoradiotherapy (CRT) improves QOL while not compromising survival outcomes in MIBC patients. In this approach, complete response to induction CRT is a prerequisite for bladder preservation and favorable oncological outcomes. We investigated a strategy to potentiate CRT response of bladder cancer cells by using Hsp90 inhibitors in preclinical models. Hsp90 inhibitors at low concentrations, which did not exert cytocidal effects but inactivated key anti-apoptotic proteins including erbB2, Akt, and NF-κB, efficiently sensitized bladder cancer cells (T24, 5637 and UM-UC-3 cells) to in vitro CRT by enhancing apoptosis. Importantly, the sensitizing effects were not observed in primarily cultured normal human urothelial cells. We also showed that CRT induces accumulation of nuclear phospho-Akt, which antagonizes apoptosis, and that Hsp90 inhibitors block the cellular process. Hsp90 inhibition sensitized bladder cancer cells to in vitro CRT more effectively than sole or combined inhibition of erbB2 and Akt. In mice UM-UC-3 tumor xenografts model, Hsp90 inhibitors successfully potentiated anti-tumor activity of CRT. These results encourage clinical trials of Hsp90 inhibitors to overcome CRT resistance in patients with MIBC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.10.24.18616 | DOI Listing |
Life Sci
January 2025
Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China. Electronic address:
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.
Purpose: The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!