Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studies have demonstrated that the L-arginine/NO/cGMP pathway and the potassium and calcium channels are involved in the mechanisms underlying opioid receptor activation. As additional pathways may participate in the observed antinociceptive effects following opioid exposure, the aim of our study was to determine whether Ca(2+)-activated Cl(-) channels (CaCCs) are involved in peripheral antinociception induced by μ-, δ- and κ-opioid receptor activation. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (PGE(2), 2 μg). Nociceptive thresholds to pressure (grams) were measured using an algesimetric apparatus 3h following injection. The μ-opioid receptor agonist morphine (200 μg), δ-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80, 80 μg), κ-opioid receptor agonist bremazocine (50 μg), CaCCs blocker niflumic acid (8-64 μg), CaCCs blocker 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 32-128 μg), nitric oxide donor sodium nitroprusside (SNP, 500 μg) and cGMP exogenous analogs dibutyryl cGMP (db-cGMP, 100 μg) were also administered into the paw. The CaCCs blocker niflumic acid and NPPB partially reversed the peripheral antinociception induced by exposure to the SNC80 in a dose-dependent manner. In contrast, niflumic acid did not modify the antinociceptive effect observed following exposure to morphine or bremazocine. Additionally, the peripheral antinociception induced by the NO donor SNP or by db-cGMP was not inhibited by niflumic acid. These results provide evidence for the involvement of CaCCs in the peripheral antinociception induced by SNC80. CaCCs activation does not appear to be involved when μ- and κ-opioid receptors are activated. In addition, we did not observe a link between CaCCs and the L-arginine/NO/GMPc pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2011.11.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!