When oxygen runs short: the microenvironment drives host-pathogen interactions.

Microbes Infect

Institute of Medical Microbiology and Hygiene, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.

Published: April 2012

Pathogens that colonize or infect the human body have to face varying oxygen concentrations within different organs. Inflammation itself promotes oxygen consumption within affected tissues and creates a low oxygen environment. As a consequence, pathogens and the host immune system have to adapt to rapid changes in oxygen availability. Here we summarize recent findings on the adaptation of pathogens, host defense mechanisms and treatment strategies against intracellular pathogens in a low oxygen environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2011.11.003DOI Listing

Publication Analysis

Top Keywords

low oxygen
8
oxygen environment
8
pathogens host
8
oxygen
6
oxygen runs
4
runs short
4
short microenvironment
4
microenvironment drives
4
drives host-pathogen
4
host-pathogen interactions
4

Similar Publications

Chlorin e6: a promising photosensitizer of anti-tumor and anti-inflammatory effects in PDT.

Nanomedicine (Lond)

January 2025

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.

Photodynamic therapy (PDT) involves the activation of photosensitizers (PSs) by visible laser light at the target site to catalyze the production of reactive oxygen species, resulting in tumor cell death and blood vessel closure. The efficacy of PDT depends on the PSs, the amount of oxygen, and the intensity of the excitation laser. PSs have been extensively researched, and great efforts have been made to develop an ideal photosensitizer.

View Article and Find Full Text PDF

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

Background: Anthrax is a life-threatening zoonotic disease caused by Gram-positive, spore-forming bacterium . It manifests as a cutaneous, gastrointestinal, and respiratory disease. The cutaneous form ranges from a self-limiting lesion to severe edematous lesions with toxemic shock.

View Article and Find Full Text PDF

Since water is both a product and a common reactant impurity in the (partial) methanol oxidation to methyl formate (MeFo) on gold, its effect on the isothermal selectivity to methyl formate was investigated under well-defined single-collision conditions employing pulsed molecular beam experiments and in situ IRAS measurements. Both a flat Au(111) and a stepped Au(332) surface were used as model catalysts to elucidate how water affects the reactivity of low-coordinated step sites as compared to (111) terrace sites employing a range of reaction conditions. The interactions of water with methanol/methoxy as well as with oxygen species are addressed.

View Article and Find Full Text PDF

Unraveling the Effects of Reducing and Oxidizing Pretreatments and Humidity on the Surface Chemistry of the Ru/CeO Catalyst during Propane Oxidation.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 180 00, Czechia.

This work investigates the surface chemistry of the Ru/CeO catalyst under varying pretreatment conditions and during the oxidation of propane, focusing on both dry and humid environments. Our results show that the Ru/CeO catalyst calcined in O at 500 °C initiates propane oxidation at 200 °C, achieves high conversion rates above 400 °C, and demonstrates almost no change in activity in the presence of water vapor across the entire studied temperature range of 200-500 °C. Prereduction of the oxidized Ru/CeO catalyst in H significantly enhances its activity, though this enhancement diminishes at higher temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!