The PSD-95/nNOS complex: new drugs for depression?

Pharmacol Ther

Molecular Neuropharmacology, Department of Physiology, Trinity College, Dublin 2, Ireland.

Published: February 2012

Drug treatment of major depressive disorder is currently limited to the use of agents which influence monoaminergic neuronal transmission including inhibitors of presynaptic transporters and monoamine oxidase. Typically improvement in depressive symptoms only emerges after several weeks of treatment, suggesting that downstream neuronal adaptations rather than the elevation in synaptic monoamine levels are responsible for antidepressant effects. In recent years, the NMDA receptor has emerged as a promising target for treating CNS disorders including stroke, pain and depression. In this review, we outline the molecular mechanisms underlying NMDA receptor signalling in neurons and in particular provide an overview of the role of the NMDAR/PSD-95/nNOS complex in CNS disorders. We discuss novel drug developments made that suggest the NMDAR/PSD-95/nNOS complex as a potential target for the treatment of depression. The review also provides examples of how PDZ-based protein-protein interactions can be exploited as novel drug targets for disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2011.11.005DOI Listing

Publication Analysis

Top Keywords

nmda receptor
8
cns disorders
8
depression review
8
nmdar/psd-95/nnos complex
8
novel drug
8
psd-95/nnos complex
4
complex drugs
4
drugs depression?
4
depression? drug
4
drug treatment
4

Similar Publications

Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.

View Article and Find Full Text PDF

Background: The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli.

View Article and Find Full Text PDF

Anti-NMDA (N-methyl-D-aspartate) receptor encephalitis (ANRE) is a rare autoimmune condition targeting brain receptors, often linked to ovarian tumors in young women. In severe cases, it can lead to status epilepticus, but in sporadic cases, it may progress to super-refractory status epilepticus (SRSE), a dangerous state of continuous or repetitive seizures demanding urgent medical attention that continues or recurs more than 24 hours after the initiation of anesthetic therapy. We present a case report of anti-NMDA receptor limbic encephalitis-triggered SRSE terminated with vagus nerve stimulation (VNS) and titrated to high stimulation parameters in the immediate postoperative period.

View Article and Find Full Text PDF

We report a case of optic neuritis (ON) secondary to autoimmune encephalitis (AE) in a patient with concomitant antibodies to N-methyl-D-aspartate receptor (NMDAR), gamma-aminobutyric acid-B receptor (GABAR), and myelin oligodendrocyte glycoprotein (MOG). The patient exhibited a constellation of symptoms, including vision loss, seizures, mental and behavioral disorders, cognitive impairment, and speech abnormalities. At the two-year follow-up, the patient's symptoms had abated entirely.

View Article and Find Full Text PDF

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!