Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2011.11.012DOI Listing

Publication Analysis

Top Keywords

[3h]gaba release
12
evoked [3h]gaba
12
[3h]gaba efflux
12
thc 2-ag
12
exo- endocannabinoids
8
cannabinoid agonists
8
inhibition evoked
8
knockout mice
8
inhibitory effects
8
2-ag partially
8

Similar Publications

The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release.

View Article and Find Full Text PDF

In this work we investigated the effect of nanomolar concentrations of nitric oxide on the release of gamma-aminobutyric acid (GABA) from rat brain nerve terminals using a radioisotope method with [3H]GABA and a spectrofluorimetric method with Ca2+-sensitive probe Fluo-4 AM. It was shown that in the presen­ce of dithiothreitol (DTT), nitric oxide donor SNAP at concentration, in which it produces NO in the nanomolar range, caused Ca2+-independent [3H]GABA release from nerve terminals. The applications of 4-aminopyridine (4-AP) and nipecotic acid (NA), as the inducers of GABA release from vesicular and cytoplasmic pools, showed that the maximum of SNAP/+DTT-induced [3H]GABA release was registered at 10th min of incubation and coincided in time with significant increase (almost double) in NA-induced [3H]GABA release.

View Article and Find Full Text PDF

Airway Epithelial Cell Release of GABA is Regulated by Protein Kinase A.

Lung

June 2016

Department of Anesthesiology, Columbia University, 630 W 168th St., P&S Box 46, New York, NY, 10032, USA.

Introduction: γ-amino butyric acid (GABA) is not only the major inhibitory neurotransmitter in the central nervous system (CNS), but it also plays an important role in the lung, mediating airway smooth muscle relaxation and mucus production. As kinases such as protein kinase A (PKA) are known to regulate the release and reuptake of GABA in the CNS by GABA transporters, we hypothesized that β-agonists would affect GABA release from airway epithelial cells through activation of PKA.

Methods: C57/BL6 mice received a pretreatment of a β-agonist or vehicle (PBS), followed by methacholine or PBS.

View Article and Find Full Text PDF

Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes.

ACS Chem Neurosci

August 2014

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN , Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 México, D.F., México.

High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [(3)H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [(3)H]-GABA release induced by high K(+) (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM).

View Article and Find Full Text PDF

Modulation of L-type Ca²⁺-channel function by dopamine is a major determinant of the rate of action potential firing by striatal medium spiny neurons. However, the role of these channels in modulating GABA release by nerve terminals in the basal ganglia is unknown. We found that depolarization-induced [³H]GABA release in both the substantia nigra reticulata and the external globus pallidus (GPe), was depressed by about 50% by either the selective L-channel dihydropyridine blocker nifedipine or the P/Q channel blocker ω-agatoxin TK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!