Using a single-molecule fluorescence approach, the time series of catalytic events of an enzymatic reaction can be monitored, yielding a sequence of fluorescent "on"- and "off"-states. An accurate on/off-assignment is complicated by the intrinsic and extrinsic noise in every single-molecule fluorescence experiment. Using simulated data, the performance of the most widely employed binning and thresholding approach was systematically compared to change point analysis. It is shown that the underlying on- and off-histograms as well as the off-autocorrelation are not necessarily extracted from the "signal'' buried in noise. The shapes of the on- and off-histograms are affected by artifacts introduced by the analysis procedure and depend on the signal-to-noise ratio and the overall fluorescence intensity. For experimental data where the background intensity is not constant over time we consider change point analysis to be more accurate. When using change point analysis for data of the enzyme α-chymotrypsin, no characteristics of dynamic disorder was found. In light of these results, dynamic disorder might not be a general sign of enzymatic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn203669rDOI Listing

Publication Analysis

Top Keywords

dynamic disorder
12
change point
12
point analysis
12
single-molecule fluorescence
8
on- off-histograms
8
disorder single-enzyme
4
single-enzyme experiments
4
experiments facts
4
facts artifacts
4
artifacts single-molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!