MR phase imaging: sensitive and contrast-enhancing visualization in cellular imaging.

Magn Reson Imaging

Functional and Micro-Magnetic Resonance Imaging Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.

Published: February 2012

The successful translation of stem-cell therapies requires a detailed understanding of the fate of transplanted cells. Magnetic resonance imaging (MRI) has provided a noninvasive means of imaging cell dynamics in vivo by prelabeling cell with T(2) shortening iron oxide particles. However, this approach suffers from a gradual loss of sensitivity since active cell mitosis could decrease the cellular contrast agent (CA) concentration below detection level. In addition, the interpretation of images may be confounded by hypointensities induced by factors other than this CA susceptibility effect (CASE). We therefore examined the feasibility of exploiting the phase information in MRI to increase the sensitivity of cellular imaging and to differentiate the CASE from endogenous image hypointensity. Phase aliasing and the B(0) field inhomogeneity effect were removed by applying a reliable unwrapping algorithm and a high-pass filter, respectively, thus delineating phase variations originating from high spatial frequencies due to the CASE. We found that the filtered phase map detects labeled cells with high sensitivity and can readily differentiate the cell migration track from the white matter, both of which are hypointense in T(2)-weighted magnitude images. Furthermore, an approximate fivefold contrast-to-noise ratio enhancement can be achieved with an MRI phase map over conventional T(2)-weighted magnitude images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2011.08.008DOI Listing

Publication Analysis

Top Keywords

cellular imaging
8
phase map
8
t2-weighted magnitude
8
magnitude images
8
phase
6
phase imaging
4
imaging sensitive
4
sensitive contrast-enhancing
4
contrast-enhancing visualization
4
visualization cellular
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Edith Cowan University, Perth, Western Australia, Australia.

Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.

View Article and Find Full Text PDF

Background: Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions.

Method: We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months.

View Article and Find Full Text PDF

Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.

View Article and Find Full Text PDF

Background: The goal of the TREAT-AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer's disease (AD). Genome-wide association studies, whole genome sequencing, and gene-expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!