By exploiting (1)H and (31)P magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, we explore the proton and orthophosphate environments in biomimetic amorphous calcium phosphate (ACP) and hydroxy-apatite (HA), as grown in vitro at the surface of a 10CaO-85SiO(2)-5P(2)O(5) mesoporous bioactive glass (MBG) in either a simulated body fluid or buffered water. Transmission electron microscopy confirmed the presence of a calcium phosphate layer comprising nanocrystalline HA. Two-dimensional (1)H-(31)P heteronuclear correlation NMR established predominantly (1)H(2)O↔(31)PO(4) (3-) and O(1)H↔(31)PO(4) (3-) contacts in the amorphous and crystalline component, respectively, of the MBG surface-layer; these two pairs exhibit distinctly different (1)H→(31)P cross-polarization dynamics, revealing a twice as large squared effective (1)H-(31)P dipolar coupling constant in ACP compared with HA. These respective observations are mirrored in synthetic (well-crystalline) HA, and the amorphous calcium orthophosphate (CaP) clusters that are present in the pristine MBG pore walls: besides highlighting very similar local (1)H and (31)P environments in synthetic and biomimetic HA, our findings evidence closely related NMR characteristics, and thereby similar local structures, of the CaP clusters in the pristine MBG relative to biomimetic ACP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225015 | PMC |
http://dx.doi.org/10.1021/jp206237n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!