Background: Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use.
Methodology/principal Findings: We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown.
Conclusions/significance: This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223209 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027776 | PLOS |
Plants (Basel)
December 2024
Facultad de Ingeniería y Negocios San Quintín, Universidad Autónoma de Baja California, Mexicali 21100, Baja California, Mexico.
Agricultural pests present a significant challenge to humanity, often managed through synthetic chemicals that, when misused, can cause irreversible harm to both the environment and human health. This study focuses on endemic plants from the Yucatán Peninsula in Mexico, particularly from the state of Campeche, to identify their historical uses and propose an updated list of species with pesticide potential in the region. We systematically reviewed specimens from the Center for Sustainable Development and Wildlife Management (CEDESU) herbarium and local databases.
View Article and Find Full Text PDFJ Helminthol
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n (1900), La Plata, Argentina.
PLoS One
January 2025
Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.
Tomography
December 2024
Hospital Regional de Alta Especialidad de la Peninsula de Yucatan, Servicios de Salud del IMSS-BIENESTAR, Merida 97130, Yucatan, Mexico.
Background: Femoroacetabular impingement (FAI) is a condition caused by abnormal contact between the femur head and the acetabulum, which damages the labrum and articular cartilage. While the prevalence and the type of impingement may vary across human groups, the variability among populations with short height or with a high prevalence of overweight has not yet been explored. Latin American studies have rarely been conducted in reference to this condition, including the Mayan and mestizo populations from the Yucatan Peninsula.
View Article and Find Full Text PDFCureus
November 2024
Respiratory Diseases Clinic, Hospital Regional de Alta Especialidad de la Península de Yucatan, Merida, MEX.
Patients with severe eosinophilic asthma (SEA) can benefit from biologic therapy but some subjects may present an immune-mediated side effect. These patients will not meet the treatment goals and might have an increased risk of exacerbations. Monitoring these patients by determining blood eosinophil (BE) levels could be one of the tools that may allow a follow-up to prevent a worsening of asthma or exacerbations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!