A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human blood monocytes toward dendritic-like cells with regulatory properties. | LitMetric

Azithromycin, a macrolide antibacterial, has been shown to modify the phenotype of macrophages. We have investigated whether azithromycin in vitro is able to modulate the differentiation of human blood monocytes to DCs. iA-DCs appear to have a unique phenotype, characterized by increased granularity, adherence, and a surface molecule expression profile similar to that of MDCs, namely, CD1a⁻CD14⁻CD71⁺CD209(high), as well as high CD86 and HLA-DR expression. The iA-DC phenotype is associated with increased IL-6 and IL-10 release, increased CCL2 and CCL18 expression and release, and M-CSF expression, as well as reduced CCL17 expression and release. Upon maturation with LPS, A-DCs and MDCs exhibit decreased expression of HLA-DR and costimulatory molecules, CD40 and CD83, as well as an increase in IL-10 and a decrease in CCL17 and CXCL11 secretion. These modulated responses of iA-DCs were associated with the ability to reduce a MLR, together with enhanced phagocytic and efferocytotic properties. Azithromycin, added 2 h before activation of iDCs with LPS, enhanced IL-10 release and inhibited IL-6, IL-12p40, CXCL10, CXCL11, and CCL22 release. In conclusion, azithromycin modulates the differentiation of blood monocyte-derived DCs to form iA-DCs with a distinct phenotype similar to that of iMDCs, accompanied by enhanced phagocytic and efferocytic capabilities. It also modifies LPS-induced DC maturation by decreasing surface molecule expression required for T cell activation, increasing IL-10 production, and inducing MLR-reducing properties.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.1210655DOI Listing

Publication Analysis

Top Keywords

differentiation human
8
human blood
8
blood monocytes
8
properties azithromycin
8
surface molecule
8
molecule expression
8
il-10 release
8
expression release
8
enhanced phagocytic
8
expression
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!