Effects of NH4+ on reflexes in cat spinal cord.

J Neurophysiol

Department of Neurology, Veterans Administration Medical Center, Minneapolis, Minnesota.

Published: August 1990

1. In deeply barbiturate-anesthetized animals. NH4+ decreases spinal excitatory synaptic transmission by neuronal depolarization and subsequent block of conduction of action potentials into presynaptic terminals of low-threshold (presumably Ia-) afferents. Because barbiturates by themselves depress excitatory synaptic transmission and may have modified the effects of NH4+, this study examines the effect of NH4+ on excitatory synaptic transmission in the unanesthetized animal. 2. The effects of NH4+ on monosynaptic and polysynaptic excitatory reflexes as well as di- and polysynaptic inhibition were investigated in the spinal cord of the decerebrate and unanesthetized cat in vivo. 3. The monosynaptic excitatory reflex (MSR) elicited by muscle nerve stimulation and polysynaptic excitatory reflexes elicited by muscle (MSR-PSR) or cutaneous nerve stimulation (Cut-PSR) were recorded from the ventral roots L7 or S1. The P-wave was recorded from the cord dorsum. Di- and polysynaptic inhibition was elicited by muscle nerve stimulation and measured as decrease of the MSR. 4. Intravenous infusion of ammonium acetate (AA) decreased MSR and the monosynaptic motoneuron pool excitatory postsynaptic potential (EPSP) recorded from the ventral root (VR-EPSP). Decrease of MSR and VR-EPSP was accompanied by an increase of the intraspinal conduction time in presynaptic terminals. The maximal decrease of the MSR was preceded by a period of transient increase of the MSR and reflex discharges from previously subthreshold VR-EPSPs. 5. The effects of NH4+ on MSR and VR-EPSP are consistent with those in barbiturate-anesthetized animals and suggest that NH4+ also decreases monosynaptic excitation in unanesthetized animals by depolarization and subsequent conduction block for action potentials in presynaptic terminals. 6. Decrease of the MSR was accompanied by a decrease of the P-wave, indicating that NH4+ simultaneously decreases mono- and oligosynaptic excitatory synaptic transmission as well as presynaptic inhibition. 7. Decrease of the MSR was accompanied by increases of MSR-PSR and Cut-PSR and decreases of di- and polysynaptic postsynaptic inhibition. 8. The neuronal circuits underlying MSR-PSR and Cut-PSR include presynaptic inhibition of group I and II afferents as well as postsynaptic inhibition of motoneurons. It is suggested that increases of MSR-PSR and Cut-PSR are contributed to by decreases of pre- and postsynaptic inhibition and neuronal depolarization by NH4+. These effects increase afferent input to motoneurons, permit uncontrolled discharge of motoneurons, and initiate reflex discharges by previously subthreshold excitatory postsynaptic potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1990.64.2.565DOI Listing

Publication Analysis

Top Keywords

decrease msr
20
effects nh4+
16
excitatory synaptic
16
synaptic transmission
16
presynaptic terminals
12
di- polysynaptic
12
elicited muscle
12
nerve stimulation
12
msr-psr cut-psr
12
postsynaptic inhibition
12

Similar Publications

Purpose: The purpose of this study was to examine the effects of a 7-week supplemental BFR training intervention on both acute and chronic alterations in salivary testosterone (sTes) and cortisol (sCort) in collegiate American football players.

Methods: 58 males were divided into 4 groups: 3 completed an upper- and lower-body split resistance training routine (H, H/S, H/S/R; H = Heavy, S = Supplemental, R = BFR), with H/S/R performing end-of-session practical BFR training, and H/S serving as the volume-matched non-BFR group. The final group (M/S/R) completed modified resistance training programming with the same practical BFR protocol as H/S/R.

View Article and Find Full Text PDF

Purpose: The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions.

View Article and Find Full Text PDF

Italian XEN-Glaucoma Treatment Registry (XEN-GTR): Effectiveness and Safety at 36 Months of XEN45 Implant.

J Clin Med

December 2024

Department of Surgical, Medical, Molecular Pathology and of Critical Care Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy.

: We evaluated the 3-year effectiveness and safety of XEN45, combined or not with phacoemulsification, in patients from the Italian XEN-Glaucoma Treatment Registry. : Data from glaucoma patients who underwent XEN45 alone or combined with phacoemulsification were analyzed. Changes in intraocular pressure (IOP) and the number of ocular hypotensive medications (OHMs) were tested with repeated measures ANOVA in last observation carried forward (LOCF) and per-protocol (PP) analyses.

View Article and Find Full Text PDF

Modular soft robots (MSRs) exhibit greater potential for sophisticated tasks compared with single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this article, we introduce a data collection strategy tailored for MSR and a bidirectional long short-term memory (biLSTM) configuration controller capable of adapting to varying module numbers.

View Article and Find Full Text PDF

Objective: In this study, we aim to determine if machine learning can reduce manual smear review (MSR) rates while meeting or exceeding the performance of traditional MSR criteria.

Method: 9938 automated CBCs with paired MSRs were performed on samples from rhesus and cynomolgus macaques. The definition of a positive (abnormal) smear was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!