Dynamic Bayesian networks (DBNs) have received increasing attention from the computational biology community as models of gene regulatory networks. However, conventional DBNs are based on the homogeneous Markov assumption and cannot deal with inhomogeneity and nonstationarity in temporal processes. The present chapter provides a detailed discussion of how the homogeneity assumption can be relaxed. The improved method is evaluated on simulated data, where the network structure is allowed to change with time, and on gene expression time series during morphogenesis in Drosophila melanogaster.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-400-1_13DOI Listing

Publication Analysis

Top Keywords

dynamic bayesian
8
bayesian networks
8
nonhomogeneous dynamic
4
networks systems
4
systems biology
4
biology dynamic
4
networks dbns
4
dbns received
4
received increasing
4
increasing attention
4

Similar Publications

Elephant Sound Classification Using Deep Learning Optimization.

Sensors (Basel)

January 2025

School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK.

Elephant sound identification is crucial in wildlife conservation and ecological research. The identification of elephant vocalizations provides insights into the behavior, social dynamics, and emotional expressions, leading to elephant conservation. This study addresses elephant sound classification utilizing raw audio processing.

View Article and Find Full Text PDF

Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.

View Article and Find Full Text PDF

In mainland China, cancer registration relies on household-registered populations, overlooking migrant populations. Estimating cervical cancer incidence among permanent residents, including migrants, offers a more accurate representation of the true burden. The data from 487 cancer registries across China in 2016 were analyzed using a Bayesian spatial regression model with the integrated nested Laplace approximation-stochastic partial differential equation method.

View Article and Find Full Text PDF

Bayesian efficient safety monitoring: a simple and well-performing framework to continuous safety monitoring of adverse events in randomized clinical trials.

J Biopharm Stat

January 2025

Johnson and Johnson Limited, Statistical Modeling and Methodology, Statistical Decision Sciences, Raritan, USA.

During randomized controlled trials, it is critical to remain vigilant in safety monitoring. A common approach is to present information over time, such as frequency tables and graphs, when analyzing adverse events. Nevertheless, there is still a need for developing statistical methods for analyzing safety data of a dynamic nature.

View Article and Find Full Text PDF

Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between image quality and radiation exposure is critical, as reducing the administered dose results in a lower signal-to-noise ratio (SNR) and information loss, which may significantly affect clinical diagnosis. Deep learning (DL) algorithms have recently made significant progress in low-dose (LD) PET reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!