Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors.

Bioinformatics

School of Computer Science and Software Engineering, Tianjin Polytechnic University, Hedong District, Tianjin 300160, PR of China.

Published: February 2012

Motivation: Nucleotides are multifunctional molecules that are essential for numerous biological processes. They serve as sources for chemical energy, participate in the cellular signaling and they are involved in the enzymatic reactions. The knowledge of the nucleotide-protein interactions helps with annotation of protein functions and finds applications in drug design.

Results: We propose a novel ensemble of accurate high-throughput predictors of binding residues from the protein sequence for ATP, ADP, AMP, GTP and GDP. Empirical tests show that our NsitePred method significantly outperforms existing predictors and approaches based on sequence alignment and residue conservation scoring. The NsitePred accurately finds more binding residues and binding sites and it performs particularly well for the sites with residues that are clustered close together in the sequence. The high predictive quality stems from the usage of novel, comprehensive and custom-designed inputs that utilize information extracted from the sequence, evolutionary profiles, several sequence-predicted structural descriptors and sequence alignment. Analysis of the predictive model reveals several sequence-derived hallmarks of nucleotide-binding residues; they are usually conserved and flanked by less conserved residues, and they are associated with certain arrangements of secondary structures and amino acid pairs in the specific neighboring positions in the sequence.

Availability: http://biomine.ece.ualberta.ca/nSITEpred/

Contact: lkurgan@ece.ualberta.ca

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btr657DOI Listing

Publication Analysis

Top Keywords

nucleotide-binding residues
8
structural descriptors
8
binding residues
8
sequence alignment
8
residues
6
sequence
6
prediction analysis
4
analysis nucleotide-binding
4
residues sequence
4
sequence sequence-derived
4

Similar Publications

Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.

View Article and Find Full Text PDF

Plant Toll/interleukin-1 receptor (TIR) domains function as NADases and ribosyl-transferases generating second messengers that trigger hypersensitive responses. TIR-X (TX) proteins contain a TIR domain with or without various C-terminal domains and lack the canonical nucleotide-binding site and leucine-rich repeat domain. In a previous study, we identified an Arabidopsis thaliana activation-tagging line with severe growth defects caused by the overexpression of the AtTX12 gene.

View Article and Find Full Text PDF

The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge.

View Article and Find Full Text PDF
Article Synopsis
  • RbgA is a GTPase that plays a crucial role in the maturation of the 50S ribosomal subunit, favoring its GTP-bound state over the GDP-bound state due to conformational differences.
  • All-atom molecular dynamics simulations revealed significant conformational changes in RbgA depending on the bound nucleotide, particularly under GTP-Mg and GMPPNP-Mg conditions, which may impact its function.
  • The study identifies key regions that influence RbgA's ribosome association and suggests that understanding these mechanisms can help develop new chemical agents to regulate ribosome biogenesis.
View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!