Motivation: Nucleotides are multifunctional molecules that are essential for numerous biological processes. They serve as sources for chemical energy, participate in the cellular signaling and they are involved in the enzymatic reactions. The knowledge of the nucleotide-protein interactions helps with annotation of protein functions and finds applications in drug design.
Results: We propose a novel ensemble of accurate high-throughput predictors of binding residues from the protein sequence for ATP, ADP, AMP, GTP and GDP. Empirical tests show that our NsitePred method significantly outperforms existing predictors and approaches based on sequence alignment and residue conservation scoring. The NsitePred accurately finds more binding residues and binding sites and it performs particularly well for the sites with residues that are clustered close together in the sequence. The high predictive quality stems from the usage of novel, comprehensive and custom-designed inputs that utilize information extracted from the sequence, evolutionary profiles, several sequence-predicted structural descriptors and sequence alignment. Analysis of the predictive model reveals several sequence-derived hallmarks of nucleotide-binding residues; they are usually conserved and flanked by less conserved residues, and they are associated with certain arrangements of secondary structures and amino acid pairs in the specific neighboring positions in the sequence.
Availability: http://biomine.ece.ualberta.ca/nSITEpred/
Contact: lkurgan@ece.ualberta.ca
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btr657 | DOI Listing |
Plant Physiol
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.
Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biology, Chosun University, Gwangju, 61452, Republic of Korea. Electronic address:
Plant Toll/interleukin-1 receptor (TIR) domains function as NADases and ribosyl-transferases generating second messengers that trigger hypersensitive responses. TIR-X (TX) proteins contain a TIR domain with or without various C-terminal domains and lack the canonical nucleotide-binding site and leucine-rich repeat domain. In a previous study, we identified an Arabidopsis thaliana activation-tagging line with severe growth defects caused by the overexpression of the AtTX12 gene.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Studies in Physics, University of Mysore, Mysuru, India.
Sci Adv
January 2025
Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!