During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302411 | PMC |
http://dx.doi.org/10.1128/JVI.05540-11 | DOI Listing |
Front Immunol
December 2024
Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Introduction: Coronaviruses and influenza viruses are significant respiratory pathogens that cause severe disease burdens and economic losses for society. Due to their diversity and evolution, vaccines typically require periodic updating to remain effective. An additional challenge is imposed by the possible coinfection of SARS-CoV-2 and influenza, which could increase disease severity.
View Article and Find Full Text PDFVirus Evol
June 2024
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Microbiol Spectr
March 2024
Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.
Unlabelled: Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit.
View Article and Find Full Text PDFViruses
September 2023
Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen in 2009 with the emergence of a swine-origin H1N1 (pdmH1N1) virus into humans, causing the first influenza pandemic of the 21st century. While the 2009 pandemic was considered to have high morbidity and low mortality, studies have linked the pdmH1N1 virus and its gene segments to increased disease in humans and animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!