Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays.

Bioresour Technol

Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.

Published: January 2012

Salix that was steam exploded at different conditions of temperature and time was anaerobically digested in a series of batch tests. Steam explosion proved to be favorable to increase the methane yields up to 50%, with best results obtained for temperatures starting at 210 °C. Batch studies for mixtures of cow manure and steam exploded Salix were performed, with C/N ratios varying from 31 to 56, related to volatile solids (VS) contents from 20 up to 80% of each of the substrates. Methane yields reached 230 mL CH(4)/g VS for the mixtures containing 30% and 40% VS of Salix over the total mixture's VS content (35 and 39 C/N ratio, respectively). A fraction up to 40% in VS from pre-treated Salix provided good methane yields with a faster digestion process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.11.017DOI Listing

Publication Analysis

Top Keywords

methane yields
12
steam explosion
8
steam exploded
8
salix
5
effects steam
4
explosion co-digestion
4
methane
4
co-digestion methane
4
methane production
4
production salix
4

Similar Publications

The catalysts of Ni nanoparticles supported on ZrO, LaO and LaZrO were prepared and employed in photothermal catalytic DRM. High yield of H and CO (76.2 and 99.

View Article and Find Full Text PDF

A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.

View Article and Find Full Text PDF

Construction of a red phosphorus-molybdenum dioxide electron-rich interface for efficient photocatalytic reduction of carbon dioxide.

J Colloid Interface Sci

January 2025

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Developing efficient catalysts to enhance photoreduction carbon dioxide (CO) into hydrocarbon fuels is a great challenge. As metallic material, molybdenum dioxide (MoO) has very high conductivity and charge density, which make it a promising candidate as photocatalyst. However, its photocatalytic activity is limited by the serious charge recombination.

View Article and Find Full Text PDF

Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH) production. After adding BM at 250 mg/g WAS VS, the accumulative CH production and maximum CH yield increased by 1.

View Article and Find Full Text PDF

Resilience and Response of Anaerobic Digestion Systems to Short-term Hydraulic Loading Shocks: Focusing on Total and Active Microbial Community Dynamics.

Environ Res

January 2025

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia.

Anaerobic digestion is known to be sensitive to operational changes, such as hydraulic loading shock, yet the impact on the microbiome, particularly the active RNA-based community, has not been fully understood. This study aimed to investigate the performance of anaerobic reactors and their microbial communities under short-term hydraulic loading shocks. Using synthetic wastewater, the reactor was subjected to 24-hour shocks at three-fold and seven-fold the baseline loading rate, followed by DNA and RNA analyses to assess the system's resiliency and microbial responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!