Tetraalkylcuprates(III): formation, association, and intrinsic reactivity.

J Am Chem Soc

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.

Published: January 2012

Tetraalkylcuprates are prototypical examples of organocopper(III) species, which remained elusive until their recent detection by NMR spectroscopy. In agreement with the NMR studies, the present electrospray ionization mass spectrometric experiments, as well as supporting electrical conductivity measurements, indicate that LiCuMe(2)·LiCN reacts with a series of alkyl halides RX. The resulting Li(+)Me(2)CuR(CN)(-) intermediates then afford the observable Me(3)CuR(-) tetraalkylcuprate anions upon Me/CN exchanges with added MeLi. In contrast, the reactions of LiCuMe(2)·LiCN with neopentyl iodide and various aryl halides give rise to halogen-copper exchanges. Concentration- and solvent-dependent studies suggest that lithium tetraalkylcuprates are not fully dissociated in ethereal solvents, but partly form Li(+)Me(3)CuR(-) contact ion pairs and presumably also triple ions LiMe(6)Cu(2)R(2)(-). According to theoretical calculations, these triple ions consist of two square-planar Me(3)CuR(-) subunits binding to a central Li(+) ion. Upon fragmentation in the gas phase, the mass-selected Me(3)CuR(-) anions undergo reductive elimination, yielding both the cross-coupling products MeR and the homocoupling product Me(2). The branching between these two fragmentation channels markedly depends on the nature of the alkyl substituent R. The triple ions LiMe(6)Cu(2)R(2)(-) (as well as their mixed analogues LiMe(6)Cu(2)R(R')(-)) also afford both cross-coupling and homocoupling products upon fragmentation, but strongly favor the former. On the basis of theoretical calculations, we rationalize this prevalence of cross-coupling by the preferential interaction of the central Li(+) ion of the triple ions with two Me groups of each Me(3)CuR(-) subunit, which thereby effectively blocks the homocoupling channel. Our results thus show how a Li(+) counterion can alter the reactivity of an organocopper species at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja209433jDOI Listing

Publication Analysis

Top Keywords

triple ions
16
ions lime6cu2r2-
8
theoretical calculations
8
central li+
8
li+ ion
8
tetraalkylcupratesiii formation
4
formation association
4
association intrinsic
4
intrinsic reactivity
4
reactivity tetraalkylcuprates
4

Similar Publications

RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%).

View Article and Find Full Text PDF

Development and Validation of a Highly Sensitive Isotope-Coded Equivalent Reporter Ion Assay for the Semi-Quantification of Isocoumarins in Complex Matrices.

Anal Chem

January 2025

China-Croatia Belt and Road Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.

The accurate quantification of multicomponents using LC-MS is pivotal for ensuring the quality control of herbal medicine, as well as the investigation of their analysis of biological tissue distribution. However, two significant challenges persist: the scarcity of authentic standards and the selection of appropriate internal standards. In this study, we present a highly sensitive isotope-coded equivalent reporter ion assay (iERIA) that combines equivalently quantitative ion and isotope-coded derivatization strategies.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines.

Angew Chem Int Ed Engl

January 2025

Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.

Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!