Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.

J Phys Chem A

Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453, USA.

Published: January 2012

The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp209360uDOI Listing

Publication Analysis

Top Keywords

transmission coefficients
12
rate constants
12
small-curvature tunneling
8
transition state
8
rate rule
8
tunneling
6
rate
5
tunneling hydrogen-transfer
4
hydrogen-transfer isomerization
4
isomerization n-alkyl
4

Similar Publications

Establishment and application of a sandwich ELISA method for measuring Toxoplasma gondii circulating fructose-1,6-bisphosphate aldolase (ALD) protein in cats.

Vet Parasitol

January 2025

Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Chongqing Academy of Animal Sciences, Chongqing, PR China. Electronic address:

Toxoplasmosis is an important public health concern. Cats play a crucial role in increasing the risk of toxoplasmosis transmission to humans. Early diagnosis in cats is essential for the prevention and control of toxoplasmosis.

View Article and Find Full Text PDF

Metallic Electro-optic Effect in Gapped Bilayer Graphene.

Nano Lett

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.

View Article and Find Full Text PDF

Compartmental Models Driven by Renewal Processes: Survival Analysis and Applications to SVIS Epidemic Models.

Sci Rep

January 2025

Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 1120, 15th Street, Augusta, GA, 30912, USA.

Compartmental models with exponentially distributed lifetime stages assume a constant hazard rate, limiting their scope. This study develops a theoretical framework for systems with general lifetime distributions, modeled as transition rates in a renewal process. Applications are provided for the SVIS (Susceptible-Vaccinated-Infected-Susceptible) disease epidemic model to investigate the impacts of hazard rate functions (HRFs) on disease control.

View Article and Find Full Text PDF

An inherently discrete-time model based on the mass action law for a heterogeneous population.

Math Biosci Eng

December 2024

Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.

In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.

View Article and Find Full Text PDF

Metal-organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!