Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.

J Chem Phys

Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824, USA.

Published: November 2011

The influence of periodic and random surface textures on the flow structure and effective slip length in Newtonian fluids is investigated by molecular dynamics (MD) simulations. We consider a situation where the typical pattern size is smaller than the channel height and the local boundary conditions at wetting and nonwetting regions are characterized by finite slip lengths. In the case of anisotropic patterns, transverse flow profiles are reported for flows over alternating stripes of different wettability when the shear flow direction is misaligned with respect to the stripe orientation. The angular dependence of the effective slip length obtained from MD simulations is in good agreement with hydrodynamic predictions provided that the stripe width is larger than several molecular diameters. We found that the longitudinal component of the slip velocity along the shear flow direction is proportional to the interfacial diffusion coefficient of fluid monomers in that direction at equilibrium. In case of random textures, the effective slip length and the diffusion coefficient of fluid monomers in the first layer near the heterogeneous surface depend sensitively on the total area of wetting regions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3663384DOI Listing

Publication Analysis

Top Keywords

effective slip
12
slip length
12
boundary conditions
8
periodic random
8
shear flow
8
flow direction
8
diffusion coefficient
8
coefficient fluid
8
fluid monomers
8
slip
6

Similar Publications

This paper first conducted a shale injection CO seepage experiment based on an improved single-vessel pressure pulse attenuation method. The experimental results reveal that the evolution pattern of shale permeability with respect to pore pressure can be divided into before and after phase change. The overall trend is that it first decreases and then increases, which is not a simple exponential form.

View Article and Find Full Text PDF

This study develops biomimetic strategies for slip prevention in prosthetic hand grasps. The biomimetic system is driven by a novel slip sensor, followed by slip perception and preventive control. Here, we show that biologically inspired sensorimotor pathways can be restored between the prosthetic hand and users.

View Article and Find Full Text PDF

Evaporative Morphology Tuning of Conducting Polymer Films Under Controlled Vacuum Conditions.

Adv Sci (Weinh)

December 2024

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea.

The evaporation of drops on solid surfaces is a ubiquitous natural phenomenon, and their dynamics play a pivotal role in many biological, environmental, and industrial processes. However, the complexity of the underlying mechanisms has largely confined previous studies to liquid drop evaporation under atmospheric conditions. In this study, the first comprehensive investigation of the evaporation dynamics of conducting polymer-containing drops under controlled vacuum environments is presented.

View Article and Find Full Text PDF

The slope of open-pit mines is typically characterized by an interaction structure involving multiple weak layers, with these structural characteristics serving as key factors in determining rock slope stability. Under the influence of random factors such as engineering activities and geological structures, the weak layers of the slope and the intact rock layers undergo relative changes. This interaction leads to a more pronounced spatial variability in the geotechnical parameters that inherently exist.

View Article and Find Full Text PDF

Introduction: Dynamic modulation of grip occurs mainly within the major structures of the brain stem, in parallel with cortical control. This basic, but fundamental level of the brain, is robust to ill-formed feedback and to be useful, it may not require all the perceptual information of feedback we are consciously aware. This makes it viable candidate for using peripheral nerve stimulation (PNS), a form of tactile feedback that conveys intensity and location information of touch well but does not currently reproduce other qualities of natural touch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!