Binding interaction of 3-hydroxyflavone (3HF), a bioactive flavonoid, with calf-thymus DNA (ctDNA) has been explored exploiting various experimental techniques. The dual fluorescence of 3HF resulting from the excited state intramolecular proton transfer (ESIPT) is modified remarkably upon binding with the biomacromolecule. The determined binding constant, fluorescence quenching experiment, circular dichroism (CD) study, comparative binding study with the known intercalative binder ethidium bromide and thermometric experiment relating to the helix melting of ctDNA confirm the groove binding of 3HF with the DNA. This is in contrast to two other members of the flavonoid group, namely, fisetin and quercetin, where the bindings are established to be intercalative. The structural difference of 3HF from the other two probes with respect to the absence/presence of the additional hydroxyl groups is ascribed to be responsible for the difference in the mode of binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2094824 | DOI Listing |
Commun Biol
January 2025
Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China. Electronic address:
As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
A dihydrofolate reductase (DHFR)-like enzyme from Leptospira interrogans (LiDHFRL) was cloned and the recombinant protein was characterized. Sequence alignment suggested that the enzyme lacked the conserved catalytic residues found in DHFR. Indeed, LiDHFRL did not catalyze the reduction of dihydrofolate by either NADH or NADPH.
View Article and Find Full Text PDFPhytomedicine
January 2025
College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:
Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.
Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!