A method based on solid phase extraction (SPE) with magnetic multi-walled carbon nanotubes (MWCNTs) as adsorbent was developed for the determination of 13 phthalate acid esters (PAEs) in water samples by gas chromatography-mass spectrometry (GC-MS). The factors affecting the extraction efficiency, such as extraction time, pH of water sample, desorption solvent, and desorption time, were carefully investigated. The optimized conditions were as follows: extraction time, 10 min; pH of water samples, 5 - 7; desorption solvent, 2 mL acetone; desorption time, 5 min. The extraction efficiencies were 89.7% - 100.5% under the optimized conditions. The method was sensitive with the detection limits (S/N = 3) between 0.08 -0.47 microg/L for the 13 PAEs. The developed method was successfully applied for the analysis of tap water, bottle drinking water and lake water, and none of the 13 PAEs was detected. The recoveries ranged from 84.5% to 107.5% for the 3 real spiked samples, and the relative standard deviations were between 1.9% and 12.8%. The developed method has proved convenient, time-saving, accurate, sensitive, and environmental-friendly, and can be used for the determination of PAEs in water samples.

Download full-text PDF

Source

Publication Analysis

Top Keywords

water samples
16
multi-walled carbon
8
carbon nanotubes
8
solid phase
8
phase extraction
8
determination phthalate
8
phthalate acid
8
acid esters
8
water
8
samples gas
8

Similar Publications

This study, conducted between June 2022 and March 2023 in Dhaka, examined prevalence in 874 samples from vegetables, vegetable wash water, and hand swabs from vendors during summer and winter. Of the total samples, 782 (89.50%) tested positive for , with 95.

View Article and Find Full Text PDF

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.

View Article and Find Full Text PDF

Over the last few decades, climate change in Svalbard (European Arctic) has led to the emergence and growth of periglacial coastal lagoons in the place of retreating glaciers. In these emerging water bodies, new ecosystems are formed, consisting of elements presumably entering the lagoon from the melting glacier, the surrounding tundra water bodies and the coastal ocean. The data presented here were collected from an emerging lagoon in the western region of Spitsbergen, Svalbard, situated between the retreating Eidembreen Glacier and Eidembukta Bay in 2022-2023.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!