Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia.

Clin Cancer Res

Departments of Hematology and Experimental Immunology, and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Published: January 2012

Purpose: Chronic lymphocytic leukemia (CLL) cells in lymph nodes (LN), from which relapses are postulated to originate, display an antiapoptotic profile in contrast to CLL cells from peripheral blood (PB). The BH3 mimetic ABT-737 antagonizes the antiapoptotic proteins Bcl-X(L) and Bcl-2 but not Mcl-1 or Bfl-1. Previously, it was shown that CD40-stimulated CLL cells were resistant to ABT-737. We aimed to define which antiapoptotic proteins determine resistance to ABT-737 in CLL and whether combination of known antileukemia drugs and ABT-737 was able to induce apoptosis of CD40-stimulated CLL cells.

Experimental Design: To mimic the LN microenvironment, PB lymphocytes of CLL patients were cultured on feeder cells expressing CD40L and treated with ABT-737 with or without various drugs. In addition, we carried out overexpression or knockdown of pro- and antiapoptotic proteins in immortalized primary B cells.

Results: Upon CD40 stimulation patient-specific variations in ABT-737 sensitivity correlated with differences in levels of Mcl-1 and its antagonist Noxa. Knockdown of Noxa, as well as Mcl-1 overexpression, corroborated the importance of the Noxa/Mcl-1 ratio in determining the response to ABT-737. Inhibition of NF-κB resulted in increased Noxa levels and enhanced sensitivity to ABT-737. Interestingly, increasing the Noxa/Mcl-1 ratio, by decreasing Mcl-1 (dasatinib and roscovitine) or increasing Noxa levels (fludarabine and bortezomib), resulted in synergy with ABT-737.

Conclusions: Thus, the Noxa/Mcl-1 balance determines sensitivity to ABT-737 in CD40-stimulated CLL cells. These data provide a rationale to investigate the combination of drugs which enhance the Noxa/Mcl-1 balance with ABT-737 to eradicate CLL in chemoresistant niches.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-11-1440DOI Listing

Publication Analysis

Top Keywords

cll cells
16
noxa/mcl-1 balance
12
antiapoptotic proteins
12
cd40-stimulated cll
12
abt-737
11
chronic lymphocytic
8
lymphocytic leukemia
8
cll
8
noxa/mcl-1 ratio
8
noxa levels
8

Similar Publications

CD8 T cells, a subset of T cells identified by the surface glycoprotein CD8, particularly those expressing the co-stimulatory molecule CD226, play a crucial role in the immune response to malignancies. However, their role in chronic lymphocytic leukemia (CLL), an immunosuppressive disease, has not yet been explored. We studied 64 CLL patients and 25 age- and sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) can rarely transform into Waldenström macroglobulinemia (WM), posing diagnostic and therapeutic challenges. The diagnosis of WM requires bone marrow infiltration by lymphoplasmacytic cells and the presence of IgM gammopathy. Immunophenotypic markers include FMC7+, CD19+, CD20+, and CD138+.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ-receptor dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells.

View Article and Find Full Text PDF

Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies.

View Article and Find Full Text PDF

Characterization of TFIIE-regulated genes by transcriptome analysis.

Turk J Biol

October 2024

Faculty of Science, Molecular Biology and Genetics, İhsan Doğramacı Bilkent University, Ankara, Turkiye.

Background/aim: Previous studies on general transcription factor II E (GTF2E) showed that it is associated with certain groups of diseases, such as colon cancer and trichothiodystrophy, but the global effect of GTF2E on cellular processes is still not widely characterized. This study aimed to investigate and characterize the effect of GTF2E on the transcription level of genes and identify the cellular processes and diseases associated with GTF2E.

Materials And Methods: The human colorectal carcinoma cell line HCT116 used in the study was transfected at a 30 nM concentration with siGTF2E1 or nontarget negative siRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!