Purpose: Isolated melanosomes are known to have antioxidant properties but whether the granules perform an antioxidant function within cells is unclear. The aim of this study was to determine whether retinal pigment epithelium (RPE) melanosomes are competent to protect cultured cells against non-photic oxidative stress induced by treatment with H(2)O(2).
Methods: Porcine melanosomes, either untreated or irradiated with visible light to simulate age-related melanin photobleaching, were introduced by phagocytosis into ARPE-19 cells. Cells were treated with H(2)O(2) using two delivery methods: as a pulse, or by continuous generation following addition of glucose oxidase to the medium. Cell survival in melanosome-containing cells was compared to survival in cells containing phagocytosed control latex beads using two real-time cell death assays.
Results: Following H(2)O(2) delivery by either method, greater resistance to critical concentrations of H(2)O(2) was seen for cells containing melanosomes than for cells containing beads. Melanosome-mediated protection manifested as a delay in the time of onset of cell death and a slower rate of cell death over time. Photobleaching diminished the stress resistance conferred by the pigment granules. Individual cells in co-cultures were differentially sensitive to oxidative stress depending upon their particle content. Additional features of the time course of the cell death response were revealed by the dynamic analyses conducted over hours post oxidant treatment.
Conclusions: The results show, for the first time, that melanosomes perform a cytoprotective function within cultured cells by acting as an antioxidant. The outcomes imply that melanosomes perform functions within RPE cells aside from those related to light irradiation, and also suggest that susceptibility to ubiquitous pro-oxidizing agents like H(2)O(2) is partly determined by discrete features of individual RPE cells such as their granule content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224837 | PMC |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFNeurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.
View Article and Find Full Text PDFVet Res Commun
January 2025
ARGO, ICAR- National Dairy Research Institute, Deemed University, Karnal, India.
Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.
View Article and Find Full Text PDFMed Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!