Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the Hsp90/Hsp70-based chaperone machinery, which regulates signaling proteins by modulating ligand binding clefts (Pratt, W. B., Morishima, Y., and Osawa, Y. (2008) J. Biol. Chem. 283, 22885-22889). We have previously shown that nNOS turnover is due to Hsp70/CHIP-dependent ubiquitination and proteasomal degradation. In this work, we use an intracellular cross-linking approach to study both chaperone binding and nNOS ubiquitination in intact HEK293 cells. Treatment of cells with N(G)-nitro-L-arginine, a slowly reversible competitive inhibitor that stabilizes nNOS, decreases both nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP. Treatment with the calcium ionophore A23187, which increases Ca(2+)-calmodulin binding to nNOS, increases nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP in a manner that is specific for changes in the heme/substrate binding cleft. Both Hsp90 and Hsp70 are bound to the expressed nNOS oxygenase domain, which contains the heme/substrate binding cleft, but not to the reductase domain, and binding is increased to an expressed fragment containing both the oxygenase domain and the calmodulin binding site. Overexpression of Hsp70 promotes nNOS ubiquitination and decreases nNOS protein, and overexpression of Hsp90 inhibits nNOS ubiquitination and increases nNOS protein, showing the opposing effects of the two chaperones as they participate in nNOS quality control in the cell. These observations support the notion that changes in the state of the heme/substrate binding cleft affect chaperone binding and thus nNOS ubiquitination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256889 | PMC |
http://dx.doi.org/10.1074/jbc.M111.323295 | DOI Listing |
Prog Neurobiol
March 2023
Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland. Electronic address:
Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
June 2021
Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana 121001, India. Electronic address:
Nitric oxide (NO), a versatile free radical and a signalling molecule, plays an important role in the haematopoiesis, inflammation and infection. Impaired proliferation and differentiation of myeloid cells lead to malignancies and Hematopoietic deficiencies. This study was aimed to define the role of nNOS derived NO in neutrophil differentiation (in-vitro) and granulopoiesis (in-vivo) using multipronged approaches.
View Article and Find Full Text PDFPLoS One
February 2021
School of Nursing, Hirosaki Gakuin University, Hirosaki, Aomori, Japan.
Excessive nitric oxide (NO) production and mitochondrial dysfunction can activate protein degradation in disuse-induced skeletal muscle atrophy. However, the increase in NO production in atrophied muscles remains controversial. In addition, although several studies have investigated the PTEN-induced kinase 1 (PINK1)/Parkin pathway, a mitophagy pathway, in atrophied muscle, the involvement of this pathway in soleus muscle atrophy is unclear.
View Article and Find Full Text PDFCells
November 2020
Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan.
Perlecan is an extracellular matrix molecule anchored to the sarcolemma by a dystrophin-glycoprotein complex. Perlecan-deficient mice are tolerant to muscle atrophy, suggesting that perlecan negatively regulates mechanical stress-dependent skeletal muscle mass. Delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma to the cytosol triggers protein degradation, thereby initiating skeletal muscle atrophy.
View Article and Find Full Text PDFFront Mol Neurosci
October 2020
Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.
Neuronal nitric oxide synthase (nNOS), an enzyme required for learning and memory, catalyzes L-arginine decomposition during nitric oxide production in mammalian neurons. Over-activation of nNOS leads to oxidative/nitrosative stress, which is part of the pathophysiological process of various neuropsychiatric disorders. Previous experimental studies suggest that nNOS is a target for small ubiquitin-like modifier 1 (SUMO1), and that SUMO1-ylation upregulates nNOS catalytic activity in hippocampal neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!