Cell fate following ER stress: just a matter of "quo ante" recovery or death?

Histol Histopathol

Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, University of Salento, Lecce, Italy.

Published: January 2012

The endoplasmic reticulum (ER) is a complex and multifunctional organelle. It is the intracellular compartment of protein folding, a complex task, both facilitated and monitored by ER folding enzymes and molecular chaperones. The ER is also a stress-sensing organelle. It senses stress caused by disequilibrium between ER load and folding capacity and responds by activating signal transduction pathways, known as unfolded protein response (UPR). Three major classes of transducer are known, inositol-requiring protein-1 (IRE1), activating transcription factor-6 (ATF6), and protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK), which sense with their endoluminal domain the state of protein folding, although the exact mechanism(s) involved is not entirely clear. Depending on whether the homeostatic response of the UPR is successful in restoring an equilibrium between ER load and protein folding or not, the two possible outcomes of the UPR so far considered have been life or death. Indeed, recent efforts have been devoted to understand the life/death switch mechanisms. However, recent data suggest that what appears to be a pure binary decision may in fact be more complex, and survival may be achieved at the expenses of luxury cell functions, such as expression of differentiation genes.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-27.1DOI Listing

Publication Analysis

Top Keywords

protein folding
12
endoplasmic reticulum
8
response upr
8
protein
5
folding
5
cell fate
4
fate stress
4
stress matter
4
matter "quo
4
"quo ante"
4

Similar Publications

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.

Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.

View Article and Find Full Text PDF

The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains IIIA and IB, linked by a sequence (AAAA), and includes an additional disulfide bond (N227C-V254C) in IIIA. This fusion protein effectively inhibited hepatic stellate cell activation.

View Article and Find Full Text PDF

Accurately predicting protein secondary structure (PSSP) is crucial for understanding protein function, which is foundational to advancements in drug development, disease treatment, and biotechnology. Researchers gain critical insights into protein folding and function within cells by predicting protein secondary structures. The advent of deep learning models, capable of processing complex sequence data and identifying meaningful patterns, offer substantial potential to enhance the accuracy and efficiency of protein structure predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!