AI Article Synopsis

Article Abstract

Parkinson's disease (PD) is associated with a characteristic regional metabolic covariance pattern that is modulated by treatment. To determine whether a homologous metabolic pattern is also present in nonhuman primate models of parkinsonism, 11 adult macaque monkeys with parkinsonism secondary to chronic systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 12 age-matched healthy animals were scanned with [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET). A subgroup comprising five parkinsonian and six control animals was used to identify a parkinsonism-related pattern (PRP). For validation, analogous topographies were derived from other subsets of parkinsonian and control animals. The PRP topography was characterized by metabolic increases in putamen/pallidum, thalamus, pons, and sensorimotor cortex, as well as reductions in the posterior parietal-occipital region. Pattern expression was significantly elevated in parkinsonian relative to healthy animals (P<0.00001). Parkinsonism-related topographies identified in the other derivation sets were very similar, with significant pairwise correlations of region weights (r>0.88; P<0.0001) and subject scores (r>0.74; P<0.01). Moreover, pattern expression in parkinsonian animals correlated with motor ratings (r>0.71; P<0.05). Thus, homologous parkinsonism-related metabolic networks are demonstrable in PD patients and in monkeys with experimental parkinsonism. Network quantification may provide a useful biomarker for the evaluation of new therapeutic agents in preclinical models of PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318142PMC
http://dx.doi.org/10.1038/jcbfm.2011.166DOI Listing

Publication Analysis

Top Keywords

nonhuman primate
8
healthy animals
8
parkinsonian control
8
control animals
8
abnormal metabolic
4
metabolic brain
4
brain networks
4
networks nonhuman
4
primate model
4
model parkinsonism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!