This research investigated the adsorption of zinc and lead from binary metal solution with tunable selectivity. A nano adsorbent was prepared by introducing imine groups onto the surface of stability enhanced magnetic nanoparticles and then characterized by TEM and FTIR. Binary metal components adsorption was carried out in different concentration of metal and EDTA solution. Due to the interaction between metals and adsorbent in the presence of EDTA, the selective adsorption of zinc and lead could be achieved with 100% selectivity. To only remove zinc from binary metals, the solution condition was [EDTA]/[M(2+)] = 0.7 with pH of 6, and its saturated adsorption capacity was 1.25 mmol/g. For selective adsorption of lead, an equilibrium adsorption capacity of 0.81 mmol/g was obtained under the condition of [EDTA]/[M(2+)] = 0.7 and pH of 2. The exhausted adsorbent could be regenerated by simple acid or alkali wash, and high purity lead and zinc salt solutions were recovered and concentrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la203810c | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Biomedical Sciences, Kent State University, Kent, OH, USA.
Background: Accumulation of β-amyloid (Aβ) plaque in the brain is a pathological hallmark of Alzheimer's Disease (AD). We recently reported that the application of mild magnetic hyperthermia is feasible to target and disrupt Aβ plaques by means of generating localized heat on the surface of magnetic nanoparticles (MNPs) targeted to Aβ aggregates in response to a remotely applied alternating magnetic field (AMF) (Nanomedicine:NBM, 2021). The objective of the current study is to demonstrate the feasibility of mild magnetic hyperthermia stimulation (MNP/AMF) in clearing Aβ deposits in vivo using 5xFAD mice, a well-established transgenic AD mouse model.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 435 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States.
Nanoparticles have gained attention as drug delivery vehicles for cancer treatment, but often struggle with poor tumor accumulation and penetration. Single external magnets can enhance magnetic nanoparticle delivery but are limited to superficial tumors due to the rapid decline in the magnetic field strength with distance. We previously showed that a 2-magnet device could extend targeting to greater tissue depths.
View Article and Find Full Text PDFAnal Methods
January 2025
Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic FeO@CoNi layered double hydroxide@silver nanoparticle (FeO@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!