Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The study of initial microbial colonization on dental surfaces is a field of intensive research because of the aetiological role of biofilms in oral diseases. Most previous studies of de novo accumulation and composition of dental biofilms in vivo do not differentiate between biofilms formed during day and night. This study hypothesized that there is a diurnal variation in the rate of accumulation of bacteria on solid surfaces in the oral cavity.
Materials And Methods: In situ biofilm from healthy individuals was collected for 12 h during day and night, respectively, subjected to fluorescent in situ hybridization and visualized using confocal laser scanning microscopy.
Results: Analysis of the biofilms using stereological methods and digital image analysis revealed a consistent statistically significant difference between both the total number of bacteria and the biovolume in the two 12-h groups (p = 0.012), with the highest accumulation of bacteria during daytime (a factor of 8.8 and 6.1 higher, respectively). Hybridization with probes specific for streptococci and Actinomyces naeslundii indicated a higher proportion of streptococci in biofilms grown during daytime as compared to night-time. No differences could be observed for A. naeslundii. The degree of microbial coverage and the bacterial composition varied considerably between different individuals.
Conclusion: The data provide firm evidence that initial biofilm formation decreases during the night, which may reflect differences in the availability of salivary nutrients. This finding is of significant importance when studying population dynamics during experimental dental biofilm formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00016357.2011.634833 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!