A gold-catalyzed intermolecular reaction of propiolic acids with alkenes led to a [4 + 2] annulation or enyne cross metathesis. The [4 + 2] annulation proceeds with net cis-addition with respect to alkenes and provides an expedient route to α,β-unsaturated δ-lactones, for which preliminary asymmetric reactions were also demonstrated. For 1,2-disubstituted alkenes, unprecedented enyne cross metathesis occurred to give 1,3-dienes in a completely stereospecific fashion. DFT calculations and experiments indicated that the cyclobutene derivatives are not viable intermediates and that the steric interactions during concerted σ-bond rearrangements are responsible for the observed unique stereospecificity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja210792eDOI Listing

Publication Analysis

Top Keywords

enyne cross
12
cross metathesis
12
gold-catalyzed intermolecular
8
propiolic acids
8
acids alkenes
8
annulation enyne
8
intermolecular reactions
4
reactions propiolic
4
alkenes
4
alkenes annulation
4

Similar Publications

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Enantioselective catalytic reactions have a significant impact on chemical synthesis, and they are important components in an experimental chemist's toolbox. However, development of asymmetric catalysts often relies on the chemical intuition and experience of a synthetic chemist, making the process both time-consuming and resource-intensive. The machine-learning-assisted reaction discovery can serve as a very efficient platform for obtaining high-performing catalysts in a time-economical manner without extensive experimentation.

View Article and Find Full Text PDF

Photocatalysis Meets Copper Catalysis: A New Opportunity for Asymmetric Multicomponent Radical Cross-Coupling Reactions.

Acc Chem Res

December 2024

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

Article Synopsis
  • Radical-mediated cross-coupling reactions are a powerful method for creating diverse molecular structures, but they face challenges in controlling reaction pathways and selectivity due to the high reactivity of radicals.
  • The use of visible-light photoredox catalysis combined with chiral copper catalysts can enhance control over radical species and improve enantioselective reactions.
  • This research focuses on innovative strategies for chiral C-C and C-O bond formation by utilizing dual photoredox/copper catalysis, highlighting the effectiveness of visible light in achieving selectivity in these reactions.
View Article and Find Full Text PDF

Here, we report a general copper-catalyzed C(sp) carboboration of 1,3-diynes, providing access to an array of tetra-substituted boryl enynes in a regioselective manner. All four positions of enyne can be efficiently manipulated using this methodology. The reaction was smoothly applied in the conjugation of complex bioactive molecules to the enyne scaffold.

View Article and Find Full Text PDF

A General Copper-Box System for the Asymmetric Arylative Functionalization of Benzylic, Propargylic or Allenylic Radicals.

Angew Chem Int Ed Engl

October 2024

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China.

Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!