Background: Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.
Methodology/principal Findings: To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.
Conclusions/significance: The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219634 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026321 | PLOS |
Braz J Microbiol
January 2025
Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.
Cowpea (Vigna unguiculata) is recognized as a promiscuous legume in its symbiotic relationships with rhizobia, capable of forming associations with a wide range of bacterial species. Our study focused on assessing the diversity of bacterial strains present in cowpea nodules when inoculated with soils from six indigenous lands of Mato Grosso do Sul state, Central-Western Brazil, comprising the Cerrado and the Pantanal biomes, which are known for their rich diversity. The DNA profiles (BOX-PCR) of 89 strains indicated great genetic diversity, with 20 groups and 23 strains occupying single positions, and all strains grouped at a final similarity level of only 25%.
View Article and Find Full Text PDFJ Xenobiot
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China.
The increased use of chlorantraniliprole and fludioxonil has sparked concerns about their residues and impact on the soil microbiome, highlighting an urgent issue requiring attention. This study investigates the residue dynamics of corn after chlorantraniliprole and fludioxonil treatments, as well as their effects on soil enzyme activity and microbial community structure. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed a significant decrease in chlorantraniliprole and fludioxonil residues in the soil after combined application, especially with chlorantraniliprole.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.
Conceptual framework to unlock the mechanisms for microbial carbon use efficiency and SOC formation.
View Article and Find Full Text PDFMethodsX
June 2025
IRD, UMR Eco&Sols, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France.
Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Agriculture and Animal Husbandry, Qinghai University, Xining, China.
The makeup of soil microbial communities may serve as a crucial predictor of the alpine grassland ecosystem. Climate change and human disturbance have resulted in intensified ecosystem degradation, such as grassland rocky desertification, which may modify the structures and composition of the microorganisms. However, little is known about the effects of rocky desertification on soil microbial communities of soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!