Hematopoietic stem cells (HSCs) can differentiate into several types of hematopoietic cells (HCs) (such as erythrocytes, megakaryocytes, lymphocytes, neutrophils, or macrophages) and also undergo self-renewal to sustain hematopoiesis throughout an organism's lifetime. HSCs are currently used clinically as transplantation therapy in regenerative medicine and are typically obtained from healthy donors or cord blood. However, problems remain in HSC transplantation, such as shortage of cells, donor risks, rejection, and graft-versus-host disease (GVHD). Thus, increased understanding of HSC regulation should enable us to improve HSC therapy and develop novel regenerative medicine techniques. HSC regulation is governed by two types of activity: intrinsic regulation, programmed primarily by cell autonomous gene expression, and extrinsic factors, which originate from so-called "niche cells" surrounding HSCs. Here, we focus on the latter and discuss HSC regulation with special emphasis on the role played by niche cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201691 | PMC |
http://dx.doi.org/10.1100/2011/598097 | DOI Listing |
Cell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:
Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Stomatology, The Fifth People's Hospital of Qinghai Province & Qinghai Cancer Hospital, Xining 810001, China.
Objective: To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/ pathway.
Methods: After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group.
NPJ Antimicrob Resist
November 2024
Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
In the last decade, invasive group A Streptococcus (iGAS) infections have doubled in the US, with equivalent increases in MLS (macrolide, lincosamide, and streptogramin B)-resistance. The emm92-type isolates carrying the erm(T) gene have been associated with an alarming emergence of iGAS infections in people who inject drugs or experience homelessness. Our goal was to elucidate the mechanisms behind inducible (iMLS) and constitutive (cMLS) resistance in emm92 isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!