Random forest for gene selection and microarray data classification.

Bioinformation

Artificial Intelligence & Bioinformatics Research Group, Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.

Published: August 2012

A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218317PMC
http://dx.doi.org/10.6026/97320630007142DOI Listing

Publication Analysis

Top Keywords

random forest
20
gene selection
20
error rates
12
subset genes
12
biggest subset
12
forest gene
8
microarray data
8
selection classification
8
genes lowest
8
smallest subset
8

Similar Publications

Health extension workers job satisfaction and associated factors in Ethiopia: a systematic review and meta-analysis.

BMC Health Serv Res

January 2025

Amref Health Africa in Ethiopia, EPI Technical Assistant at West Gondar Zonal Health Department, SLL Project, COVID-19 Vaccine, Gondar, Ethiopia.

Background: Ethiopian healthcare relies heavily on Health Extension Workers (HEWs), who deliver essential services to communities nationwide. By analyzing existing research, the authors explore how prevalent job satisfaction is and what factors affect it. This comprehensive analysis aims to improve HEW satisfaction through targeted interventions, ultimately leading to a more effective healthcare workforce and better health outcomes in Ethiopia.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Diabetes is a growing health concern in developing countries, causing considerable mortality rates. While machine learning (ML) approaches have been widely used to improve early detection and treatment, several studies have shown low classification accuracies due to overfitting, underfitting, and data noise. This research employs parallel and sequential ensemble ML approaches paired with feature selection techniques to boost classification accuracy.

View Article and Find Full Text PDF

Objective: We aimed to develop a highly interpretable and effective, machine-learning based risk prediction algorithm to predict in-hospital mortality, intubation and adverse cardiovascular events in patients hospitalised with COVID-19 in Australia (AUS-COVID Score).

Materials And Methods: This prospective study across 21 hospitals included 1714 consecutive patients aged ≥ 18 in their index hospitalization with COVID-19. The dataset was separated into training (80%) and test sets (20%).

View Article and Find Full Text PDF

Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!