Despite a dramatic reduction in restenosis and target vessel revascularisation rates by drug eluting stents (DES), conflicting concerns have been raised over the risk for late DES thrombosis when compared to bare metal stents. Certainly, the heterogeneity of DES results from the introduction of a great variety of new DES types with diverse efficacy and safety parameters. Furthermore, we observe a steady increase in DES availability without parallel and robust data from randomised clinical trials. Thus, the postulated class effect of DES should be regarded as non-obligatory. This article is based on 110 randomised DES trials performed on 72 305 patients. Current status of DES and guidelines for DES implantation in various clinical scenarios were discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

des
9
[current status
4
status drug-eluting
4
drug-eluting stents
4
stents drug-eluting
4
drug-eluting balloons
4
balloons patients
4
patients stable
4
stable coronary
4
coronary artery
4

Similar Publications

Because of the lengthening of their life-expectancy, more people with cystic fibrosis (CF) now pursue parenthood. To explore the experience of parenting while having CF, 18 French parents with CF were interviewed (including 12 mothers and 9 participants with a lung transplant). A thematic analysis of the interview transcripts was conducted.

View Article and Find Full Text PDF

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.

View Article and Find Full Text PDF

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!