Despite the crucial role of touch in social development, there is very little functional magnetic resonance imaging (fMRI) research on brain mechanisms underlying social touch processing. The "skin as a social organ" hypothesis is supported by the discovery of C-tactile (CT) nerves that are present in hairy skin and project to the insular cortex. CT-fibers respond specifically well to slow, gentle touch such as that which occurs during close social interactions. Given the social significance of such touch researchers have proposed that the CT-system represents an evolutionarily conserved mechanism important for normative social development. However, it is currently unknown whether brain regions other than the insula are involved in processing CT-targeted touch. In the current fMRI study, we sought to characterize the brain regions involved in the perception of CT-supported affective touch. Twenty-two healthy adults received manual brush strokes to either the arm or palm. A direct contrast of the blood-oxygenation-level-dependent (BOLD) response to gentle brushing of the arm and palm revealed the involvement of a network of brain regions, in addition to the posterior insula, during CT-targeted affective touch to the arm. This network included areas known to be involved in social perception and social cognition, including the right posterior superior temporal sulcus and the medial prefrontal cortex (mPFC)/dorso anterior cingulate cortex (dACC). Connectivity analyses with an mPFC/dACC seed revealed coactivation with the left insula and amygdala during arm touch. These findings characterize a network of brain regions beyond the insula involved in coding CT-targeted affective touch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869848PMC
http://dx.doi.org/10.1002/hbm.21480DOI Listing

Publication Analysis

Top Keywords

affective touch
16
brain regions
16
touch
10
brain mechanisms
8
social
8
social development
8
regions insula
8
insula involved
8
arm palm
8
network brain
8

Similar Publications

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Endocannabinoid contributions to the perception of socially relevant, affective touch in humans.

Neuropsychopharmacology

January 2025

Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.

Social relationships are central to well-being. A subgroup of afferent nerve fibers, C-tactile (CT) afferents, are primed to respond to affective, socially relevant touch and may mitigate the effects of stress. The endocannabinoid ligand anandamide (AEA) modulates both social reward and stress.

View Article and Find Full Text PDF

C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.

View Article and Find Full Text PDF

Research on interoception has revealed the role of heartbeats in shaping our perceptual awareness and embodying a first-person perspective. These heartbeat dynamics exhibit distinct responses to various types of touch. We advanced that those dynamics are directly associated to the brain activity that allows self-other distinction.

View Article and Find Full Text PDF

Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor.

Sensors (Basel)

December 2024

Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan.

Tactile perception plays a crucial role in the perception of products and consumer preferences. This perception process is structured in hierarchical layers comprising a sensory layer (soft and smooth) and an affective layer (comfort and luxury). In this study, we attempted to predict the evaluation score of sensory and affective tactile perceptions of materials using a biomimetic multimodal tactile sensor that mimics the active touch behavior of humans and measures physical parameters such as force, vibration, and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!