Systematical analysis of impacts of heat stress on the proliferation, apoptosis and metabolism of mouse hepatocyte.

J Physiol Sci

The Key Laboratory of Pharmacology and Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, People's Republic of China.

Published: January 2012

Heat stress will stimulate cells of living organisms to generate heat shock proteins (Hsps). In the mouse liver, impacts of heat stress on hepatocyte proliferation, apoptosis and metabolism have not been studied systematically at different temperatures. In this research, the test mice were heated to 40, 42, 44 and 46°C, respectively, for 20 min and recovered at room temperature for 8 h in normal feeding conditions; the control animals were kept at room temperature without heat stress. The expression levels of Hsp70, Pcna, Bax, Bcl2, cytochrome P450 1A2 (CYP1A2), CYP2E1 and analog of CYP3A4 (not reported in mouse before), the parameters reflecting stress strength, cell proliferation, apoptosis and metabolism, were detected by western blotting, immunohistochemistry and semi-quantitative RT-PCR in test and control mice. Haematoxylin-eosin (H&E) staining and TUNEL analysis were further used to study the impacts of heat stress at different temperatures on hepatocellular necrosis and apoptosis. Serum AST and ALT levels, the markers of liver injury, were measured after heat stress at different temperatures. The data show that Hsp70 expression was significantly increased when temperature increased (P < 0.05). At lower temperatures (40 or 42°C), expression of Pcna, CYP1A2 and analog of CYP3A4 were considerably increased (P < 0.05) while hepatocyte necrosis and apoptosis were not induced (P > 0.05). At higher temperatures (44 or 46°C), expression of Pcna was decreased while hepatocyte necrosis and apoptosis were induced (P < 0.05). Expressions of CYP1A2 and analog of CYP3A4 were decreased especially at 46°C (P < 0.05). Expression of CYP2E1 could not be detected to increase at 40°C but was at high levels at 42, 44 and 46°C (P < 0.05). Expressions of AST and ALT were not different between the test mice and control mice at 40°C while they were significantly higher in the test mice than those in the control mice at 42 (P < 0.05), 44 and 46°C (P < 0.01). In conclusion, heat stress at lower temperatures promotes hepatocyte proliferation and improves the metabolic efficiency in mouse liver while heat stress at higher temperatures inhibits hepatocyte proliferation, promotes hepatocyte apoptosis and induces hepatocyte necrosis. This may give a hint to understanding human liver injury in high temperatures. Moreover, it is the first time that the analog of CYP3A4 was detected in mouse hepatocellular cytoplasm. It is worthwhile to dissect its function in future work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717989PMC
http://dx.doi.org/10.1007/s12576-011-0183-6DOI Listing

Publication Analysis

Top Keywords

heat stress
24
impacts heat
12
proliferation apoptosis
12
apoptosis metabolism
12
room temperature
8
stress temperatures
8
heat
7
stress
7
systematical analysis
4
analysis impacts
4

Similar Publications

Heat acclimation mediates cellular protection via HSP70 stabilization of HIF-1α protein in extreme environments.

Int J Biol Sci

January 2025

Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.

View Article and Find Full Text PDF

Objectives: The purpose of this research was to assess the impact of exposure to heat on the physical, social, and mental health domains of adults residing in the United Arab Emirates (UAE), where the region faces great increases in temperature due to climate change. Previous research has focused mainly on physical health outcomes; this research addressed the expansive impacts of mental and social health, which remain understudied in the region.

Methods: A cross-sectional study surveyed 397 adults in the UAE using a structured questionnaire.

View Article and Find Full Text PDF

Autoimmune inner ear disease (AIED) is a rare condition characterized by immune-mediated damage to the inner ear, leading to progressive sensorineural hearing loss (SNHL) and vestibular symptoms such as vertigo and tinnitus. This study investigates the pathogenesis and therapeutic strategies for AIED through the analysis of three cases with different underlying autoimmune disorders: rheumatoid arthritis, relapsing polychondritis, and IgG4-related disease. The etiology of AIED involves complex immunopathological mechanisms, including molecular mimicry and the "bystander effect," with specific autoantibodies, such as those against heat shock protein 70 (HSP70), playing a potential role in cochlear damage.

View Article and Find Full Text PDF

Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92% conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes.

View Article and Find Full Text PDF

Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!